自适应调节Q和R的自适应UKF(AUKF_QR)的MATLAB程序

简述

基于三维模型的UKF,设计一段时间的输入状态误差较大,此时通过对比预测的状态值与观测值的残差,在相应的情况下自适应调节系统协方差Q和观测协方差R,构成自适应无迹卡尔曼滤波(AUKF),与传统的UKF相比,三轴误差的平均值得到了降低,带经典UKF的误差对比、无滤波情况下的UKF对比。带中文注释。

运行截图

在这里插入图片描述
误差图:
在这里插入图片描述
平均误差输出的结果图:
在这里插入图片描述

部分源代码

% 自适应调节Q和R的UKF与传统UKF效果对比
% author:Evand
% 作者联系方式:evandjiang@qq.com(除前期达成一致外,付费咨询)
% 2024-5-5/Ver1
clear;clc;close all;
%% 滤波模型初始化
t = 1:1:1000;
Q = 1*diag([1,1,1]);w=sqrt(Q)*randn(size(Q,1),length(t));
R = 1*diag([1,1,1]);v=sqrt(R)*randn(size(R,1),length(t));
P0 = 1*eye(3);
X=zeros(3,length(t));
Z=zeros(3,length(t)); %定义观测值形式
Z(:,1)=[X(1,1)^2/20;X(2,1);X(3,1)]+v(:,1); %观测量
residue_tag = 0;
%% 运动模型
X_=zeros(3,length(t));
X_(:,1)=X(:,1);
for i1 = 2:length(t)X(:,i1) = [X(1,i1-1) + (2.5 * X(1,i1-1) / (1 + X(1,i1-1).^2)) + 8 * cos(1.2*(i1-1));X(2,i1-1)+1;X(3,i1-1)]; %真实值if i1>500 && i1<700 %设定IMU误差较大的时间段w(:,i1) = 10*w(:,i1);Z(:,i1) = [X(1,i1).^2 / 20;X(2,i1);X(3,i1)] + 10*v(i1); %观测值elsew(:,i1) = w(:,i1);endX_(:,i1) = [X_(1,i1-1) + (2.5 * X_(1,i1-1) / (1 + X_(1,i1-1).^2)) + 8 * cos(1.2*(i1-1));X_(2,i1-1)+1;X_(3,i1-1)] + w(:,i1);%未滤波的值Z(:,i1)=[X(1,i1)^2/20;X(2,i1);X(3,i1)]+v(:,i1); %观测量
end%% UKF
P = P0;
X_ukf=zeros(3,length(t));
X_ukf(:,1)=X(:,1);
for k = 2 : length(t)Xpre = X_ukf(:,k-1);% sigma点和权重apha = 0.1; %【自己可以设置,取值:0.001~1】% calculateSigPntsandWeightsn = size(X,1);State_aug = Xpre;lambda = 3;% sigma点Sigma_Points = zeros(n, 2*n+1);Sigma_Points(:,1) = State_aug;A = chol(P,'lower');for i = 1:nSigma_Points(:,i+1) = State_aug + sqrt(lambda+n)*A(:,i);Sigma_Points(:,i+1+n) = State_aug -sqrt(lambda+n)*A(:,i);endWeights_m = zeros(2*n+1,1);for i = 1:2*n+1if i==1Weights_m(i,1) = lambda / (lambda+n);Weights_c(i,1) = lambda / (lambda+n)+1-apha^2+2;elseWeights_m(i,1) = 0.5 / (lambda+n);Weights_c(i,1) = 0.5 / (lambda+n);endend% 预测for i = 1:size(Weights_m)Sigma_pred(:,i) = [Sigma_Points(1,i)+2.5*Sigma_Points(1,i)/(1+Sigma_Points(1,i)^2)+8*cos(1.2*(k-1));Sigma_Points(2,i)+1;Sigma_Points(3,i)]+w(:,k);end% State_predXpre = Sigma_pred*Weights_m;n = size(Xpre,1);P_pred = zeros(n, n);for i = 1:size(Weights_m)x_diff = Sigma_pred(:,i) - Xpre;P_pred = P_pred + Weights_c(i,1)*x_diff*transpose(x_diff);end% 由各个状态量的点来求观测量for i = 1:size(Weights_m)Z_sigma(:,i) = [Sigma_pred(1,i)^2/20;Sigma_pred(2,i);Sigma_pred(3,i)];endZ_pred = Z_sigma*Weights_m;P_pred = P_pred+Q;X_ukf(:,k) = Xpre;% 观测更新nx = size(Xpre,1);nz = size(Z_pred,1);S = zeros(nz, nz);for i = 1:size(Weights_m)z_diff = Z_sigma(:,i) - Z_pred;S = S + Weights_c(i,1)*z_diff*transpose(z_diff);endS = S+R;TC = zeros(nx, nz);for i = 1:size(Weights_m)z_diff = Z_sigma(:,i) - Z_pred;x_diff = Sigma_pred(:,i) - Xpre;TC = TC + Weights_c(i,1)*x_diff*transpose(z_diff);endK = TC/S;% 更新P和滤波的状态量residue = Z(:,k) - Z_pred;Xpre = Xpre + K*residue;P = P_pred - K*S*transpose(K);X_ukf(:,k) = Xpre;end
%% AUKF
P = P0;
X_aukf=zeros(3,length(t));
X_aukf(:,1)=X(:,1);

完整程序下载链接

https://download.csdn.net/download/callmeup/89267155

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/6844.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【分布式 | 第五篇】何为分布式?分布式锁?和微服务关系?

文章目录 5.何为分布式&#xff1f;分布式锁&#xff1f;和微服务关系&#xff1f;5.1何为分布式&#xff1f;5.1.1定义5.1.2例子5.1.3优缺点&#xff08;1&#xff09;优点&#xff08;2&#xff09;缺点 5.2何为分布式锁&#xff1f;5.2.1定义5.2.2必要性 5.3区分分布式和微服…

zookeeper启动 FAILED TO START

注意&#xff1a;启动zookeeper时&#xff0c;需要使用zkServer.sh start命令将所有主机启动后&#xff0c;再查看状态 如果&#xff0c;启动一台主机&#xff0c;查看当前主机状态&#xff0c;则会报错 如果出错&#xff0c;进入到$ZOOKEEPER_HOME/logs&#xff0c;查看日志 …

LabVIEW智能变电站监控系统设计与实现

LabVIEW智能变电站监控系统设计与实现 随着电力系统和智能化技术的快速发展&#xff0c;建立一个高效、可靠的变电站监控系统显得尤为重要。通过分析变电站监控系统的需求&#xff0c;设计了一个基于LabVIEW软件的监控平台。该平台利用虚拟仪器技术、传感器技术和无线传输技术…

Nginx rewrite项目练习

Nginx rewrite练习 1、访问ip/xcz&#xff0c;返回400状态码&#xff0c;要求用rewrite匹配/xcz a、访问/xcz返回400 b、访问/hello时正常访问xcz.html页面server {listen 192.168.99.137:80;server_name 192.168.99.137;charset utf-8;root /var/www/html;location / {root …

【论文阅读:Towards Efficient Data Valuation Based on the Shapley Value】

基于Shapley值的高校数据价值评估 主要贡献 提出了一系列用于近似计算Shapley值的高效算法。设计了一个算法&#xff0c;通过实现不同模型评估之间的适当信息共享来实现这一目标,该算法具有可证明的误差保证来近似N个数据点的SV&#xff0c;其模型评估数量为 O ( N l o g ( N…

EPICS DataBase详解

1、分布式EPICS设置 1&#xff09; 操作界面&#xff1a;包括shell命令行方式(caget, caput, camonitor等)和图形界面方式(medm, edm, css等)。 2&#xff09;输入输出控制器(IOC) 2、IOC 1) 数据库&#xff1a;数据流&#xff0c;基本上周期运行 2)sequencer&#xff1a;基…

插入法(直接/二分/希尔)

//稳定耗时&#xff1a; 双向冒泡&#xff0c;可指定最大最小值个数MaxMinNum<nsizeof(Arr)/sizeof(Arr[0]), void BiBubbleSort(int Arr[],int n&#xff0c;int MaxMinNum){int left0,rightn-1;int i;bool notDone true;int temp;int minPos;while(left<right&&am…

图像处理--空域滤波增强(原理)

一、均值滤波 线性滤波算法&#xff0c;采用的主要是邻域平均法。基本思想是使用几个像素灰度的某种平均值来代替一个原来像素的灰度值。可以新建一个MN的窗口以为中心&#xff0c;这个窗口S就是的邻域。假设新的新的像素灰度值为&#xff0c;则计算公式为 1.1 简单平均法 就是…

LeetCode 234.回文链表

题目描述 给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为 回文链表 。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,2,1] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff…

PWN入门之Stack Overflow

Stack Overflow是一种程序的运行时&#xff08;runtime&#xff09;错误&#xff0c;中文翻译过来叫做“栈溢出”。栈溢出原理是指程序向栈中的某个变量中写入的字节数超过了这个变量本身所申请的字节数&#xff0c;导致与其相邻的栈中的变量值被改变。 在本篇文章中&#xff…

常用语音识别开源四大工具:Kaldi,PaddleSpeech,WeNet,EspNet

无论是基于成本效益还是社区支持&#xff0c;我都坚决认为开源才是推动一切应用的动力源泉。下面推荐语音识别开源工具&#xff1a;Kaldi&#xff0c;Paddle&#xff0c;WeNet&#xff0c;EspNet。 1、最成熟的Kaldi 一个广受欢迎的开源语音识别工具&#xff0c;由Daniel Pove…

代码随想录算法训练营DAY54|C++动态规划Part15|647.回文子串、516最长回文子序列、

文章目录 647.回文子串思路CPP代码双指针 516最长回文子序列思路CPP代码 动态规划总结篇 647.回文子串 力扣题目链接 文章链接&#xff1a;647.回文子串 视频链接&#xff1a;动态规划&#xff0c;字符串性质决定了DP数组的定义 | LeetCode&#xff1a;647.回文子串 其实子串问…

第07-6章 应用层详解

HTTP、SSL&#xff1a;基于TCP&#xff0c;HTTP端口:80、HTTPS&#xff08;加密&#xff09;端口&#xff1a;443&#xff1b;FTP:基于TCP&#xff0c;两类端口&#xff1a;21、20&#xff08;数据传输之前需要建立连接此时是21&#xff0c;真正传输数据时用20&#xff09;TFTP…

机器学习中线性回归算法的推导过程

线性回归是机器学习中监督学习中最基础也是最常用的一种算法。 背景&#xff1a;当我们拿到一堆数据。这堆数据里有参数&#xff0c;有标签。我们将这些数据在坐标系中标出。我们会考虑这些数据是否具有线性关系。简单来说 我们是否可以使用一条线或者一个平面去拟合这些数据的…

如何在交换机上重置密码而不丢失配置?如何配置SSH远程登录?

在网络设备管理中&#xff0c;保持设备的安全性是至关重要的&#xff0c;所以console密码是必须设置的&#xff0c;绝对不能偷懒。 但是&#xff0c;如果习惯不好&#xff0c;或者离职时交接不好&#xff0c;就会导致密码丢失&#xff0c;此时想要修改网络设置的配置就麻烦了。…

华为OD机试 - 符号运算 - 递归(Java 2024 C卷 100分)

华为OD机试 2024C卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;A卷B卷C卷&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;每一题都有详细的答题思路、详细的代码注释、样例测试…

使用 FFmpeg 从音视频中提取音频

有时候我们需要从视频文件中提取音频&#xff0c;并保存为一个单独的音频文件&#xff0c;我们可以借助 FFmpeg 来完成这个工作。 一、提取音频&#xff0c;保存为 mp3 文件: 要使用 FFmpeg 从音视频文件中提取音频&#xff0c;并将 ACC 编码的音频转换为 MP3 格式&#xff0…

CNN实现fashion_mnist数据集分类(tensorflow)

1、查看tensorflow版本 import tensorflow as tfprint(Tensorflow Version:{}.format(tf.__version__)) print(tf.config.list_physical_devices())2、加载fashion_mnist数据与预处理 import numpy as np (train_images,train_labels),(test_images,test_labels) tf.keras.d…

Neo4j+LLM+RAG 环境配置报错处理

开发KGLLMRAG程序时遇到以下报错&#xff0c;记录下处理方案&#xff1a; ValueError: Could not use APOC procedures. Please ensure the APOC plugin is installed in Neo4j and that ‘apoc.meta.data()’ is allowed in Neo4j configuration 这个参考文章&#xff1a;link…

FFmpeg学习记录(四)——SDL音视频渲染实战

1.SDL使用的基本步骤 SDL Init/sDL _Quit()SDL_CreateWindow()/SDL_DestoryWindow()SDL CreateRender() SDL_Windows *windows NULL;SDL_Init(SDL_INIT_VIDEO);window SDL_CreateWindow("SDL2 Windows",200,200, 640,480,SDL_WINDOW_SHOWN);if(!window) {printf(&…