RK3568笔记二十四:基于Flask的网页监控系统

若该文为原创文章,转载请注明原文出处。

此实验参考 《鲁班猫监控检测》,原代码有点BUG,已经下载不了。2. 鲁班猫监控检测 — [野火]嵌入式AI应用开发实战指南—基于LubanCat-RK系列板卡 文档 (embedfire.com)

一、简介

记录简单的摄像头监控检测示例,用户在浏览器上登录监控页面,登录后点击按钮可以进行视频录制和目标检测。 web程序采用的是基于python的flask框架,实现流媒体直播,图像是通过opencv调用摄像头获取,对图片检测处理使用npu。最络效果如下:

二、环境

1、测试平台:ATK-RK3568

2、系统: buildroot

3、Python版本:系统自带

4、opencv版本:系统自带

5、Toolkit Lite2:系统自带

6、Flask:1.0.2

三、Flask安装

Flask系统没有安装需要自己安装,安装需要联网

打开板子终端,插好网线,输入udhcpc自动获取网络。

安装Flask

pip install flask

flask库简单使用可以参考 Flask 官方文档。

四、框架介绍

1、Flask介绍

Flask通过 /video_viewer 路由返回一个入参为生成器的Response对象。Flask将会负责调用生成器,进入循环,持续地将摄像头中获取的帧数据作为响应块返回, 并把所有部分的结果以块的形式发送给客户端。

2、网页

网页分为两个界面,一是显示,一是登录。

登录需要输入账号和密码,账号密码内置好了,在另一个文件里。

login.html

<!DOCTYPE html>
<html>
<head><meta charset="UTF-8"><title>Login</title><meta name="viewport" content="width=device-width, initial-scale=1"><script type="application/x-javascript"> addEventListener("load", function () {setTimeout(hideURLbar, 0);}, false);function hideURLbar() {window.scrollTo(0, 1);} </script><link href="../static/css/style.css" rel='stylesheet' type='text/css'/><!--字体--><link href='http://fonts.useso.com/css?family=PT+Sans:400,700,400italic,700italic|Oswald:400,300,700'rel='stylesheet' type='text/css'><link href='http://fonts.useso.com/css?family=Exo+2' rel='stylesheet' type='text/css'><!--//js--><script src="http://ajax.useso.com/ajax/libs/jquery/1.11.0/jquery.min.js"></script>
</head>
<body>
<script>$(document).ready(function (c) {$('.close').on('click', function (c) {$('.login-form').fadeOut('slow', function (c) {$('.login-form').remove();});});
});
</script>
<!--SIGN UP-->
<h1>ATK-RK3568监控检测</h1>
<div class="login-form"><div class="close"></div><div class="head-info"><label class="lbl-1"> </label><label class="lbl-2"> </label><label class="lbl-3"> </label></div><div class="clear"></div><div class="avtar"><img src="../static/images/cat.png"/></div><form method="post" action="{{ url_for("user.login") }}"><input type="text" class="text" name="username" value="Username" onfocus="this.value = '';"onblur="if (this.value == '') {this.value = 'Username';}"><div class="key"><input type="password" name="password" value="Passowrd" onfocus="this.value = '';"onblur="if (this.value == '') {this.value = 'Password';}"></div><div class="signin"><input type="submit" value="Login">{% if errmsg %} {# 判断是否有错误信息 #}<div class="error_tip" style="display: block;color: red">{{ errmsg }}</div>{% endif %}</div></form></div>
<div class="copy-rights"><p> Copyright@2023 仅供学习参考,详细使用信息参考下 <a href="https://doc.embedfire.com/linux/rk356x/Python/zh/latest/circuit/rknn.html" target="_blank" title="Github">教程</a></p>
</div></body>
</html>

index.html

<!DOCTYPE html>
<html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta http-equiv="X-UA-Compatible" content="ie=edge"><title>ATK-RK3568监控检测</title><style>body {background-color: #484856;}</style>
</head>
<body>
<h1 align="center" style="color: whitesmoke;">Flask+OpenCV+Rknn</h1>
<div class="top"><div class="recorder" id="recorder" align="center"><button id="record" class="btn">录制视频</button><button id="stop" class="btn">暂停录制</button><button id="process" class="btn">开启检测</button><button id="pause" class="btn">暂停检测</button><input type="button" class="btn" value="退出登录"onclick="javascrtpt:window.location.href='{{ url_for('user.logout') }}'"><a id="download"></a><script type="text/javascript" src="{{ url_for('static', filename='button_process.js') }}"></script></div>
</div>
<img id="video" src="{{ url_for('home.video_viewer') }}">
</body>
</html>

显示界面就几个按钮和显示区域,比较简单。

3、摄像头中获取帧

摄像头获取代码比较多, 这里只贴一部分

def get_frame(self):ret, self.frame = self.cap.read()print('---->:get_frame')if ret:if self.is_process:#self.image = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB)self.image = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB)self.image2 = np.expand_dims(self.image, 0)self.outputs = self.rknn_lite.inference(inputs=[self.image2], data_format=['nhwc'])print('done')self.frame = process_image(self.image, self.outputs)#self.rknn_frame = process_image(self.image, self.outputs)#cv2.imwrite('result.jpg', self.frame)print('Save results to result.jpg!')ret, image = cv2.imencode('.jpg', self.frame)return image.tobytes()if self.frame is not None:ret, image = cv2.imencode('.jpg', self.frame)print('---->:cv2.imencode')return image.tobytes()else:return None

简单的説是读取摄像头数据,然后判断是识别的还是不是识别。 is_process是识别标记,通过网页上的按钮来控制。读取数据后通过tobytes上传给网页显示。

4、NPU处理图像

RKNN Toolkit Lite2安装方法,正点原子的手册写的很详细,自行安装,其他板子类似。

处理流程:

1、创建RKNN对象

self.rknn_lite = RKNNLite()

2、加载RKNN模型

def load_rknn(self):# load RKNN modelprint('--> Load RKNN model')ret = self.rknn_lite.load_rknn(RKNN_MODEL)if ret != 0:print('Load RKNN model failed')exit(ret)# Init runtime environmentprint('--> Init runtime environment')ret = self.rknn_lite.init_runtime()if ret != 0:print('Init runtime environment failed!')exit(ret)

3、对摄像头获取的图片进行处理,设置图片大小

self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 640)

4、转换成RGB格式

opencv输出的格式是BGR,需要转成RGB处理

self.image = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB)

5、推理

self.image2 = np.expand_dims(self.image, 0)
self.outputs = self.rknn_lite.inference(inputs=[self.image2], data_format=['nhwc'])

先给图片数据增加一个维度,在推理输出。

6、对图像进行后处理,返回处理后的图像

self.frame = process_image(self.image, self.outputs)

后处理完整代码。 

import urllib
import time
import sys
import numpy as np
import cv2
from rknnlite.api import RKNNLiteRKNN_MODEL = './controller/utils/yolov5s.rknn'
OBJ_THRESH = 0.25
NMS_THRESH = 0.45
IMG_SIZE = 640CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light","fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant","bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite","baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ","spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa","pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop	", "mouse	", "remote ", "keyboard ", "cell phone", "microwave ","oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")def sigmoid(x):return 1 / (1 + np.exp(-x))def xywh2xyxy(x):# Convert [x, y, w, h] to [x1, y1, x2, y2]y = np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left xy[:, 1] = x[:, 1] - x[:, 3] / 2  # top left yy[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right xy[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right yreturn ydef process(input, mask, anchors):anchors = [anchors[i] for i in mask]grid_h, grid_w = map(int, input.shape[0:2])box_confidence = input[..., 4]box_confidence = np.expand_dims(box_confidence, axis=-1)box_class_probs = input[..., 5:]box_xy = input[..., :2]*2 - 0.5col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)grid = np.concatenate((col, row), axis=-1)box_xy += gridbox_xy *= int(IMG_SIZE/grid_h)box_wh = pow(input[..., 2:4]*2, 2) * anchorsbox = np.concatenate((box_xy, box_wh), axis=-1)return box, box_confidence, box_class_probsdef filter_boxes(boxes, box_confidences, box_class_probs):"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!# Argumentsboxes: ndarray, boxes of objects.box_confidences: ndarray, confidences of objects.box_class_probs: ndarray, class_probs of objects.# Returnsboxes: ndarray, filtered boxes.classes: ndarray, classes for boxes.scores: ndarray, scores for boxes."""boxes = boxes.reshape(-1, 4)box_confidences = box_confidences.reshape(-1)box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])_box_pos = np.where(box_confidences >= OBJ_THRESH)boxes = boxes[_box_pos]box_confidences = box_confidences[_box_pos]box_class_probs = box_class_probs[_box_pos]class_max_score = np.max(box_class_probs, axis=-1)classes = np.argmax(box_class_probs, axis=-1)_class_pos = np.where(class_max_score >= OBJ_THRESH)boxes = boxes[_class_pos]classes = classes[_class_pos]scores = (class_max_score* box_confidences)[_class_pos]return boxes, classes, scoresdef nms_boxes(boxes, scores):"""Suppress non-maximal boxes.# Argumentsboxes: ndarray, boxes of objects.scores: ndarray, scores of objects.# Returnskeep: ndarray, index of effective boxes."""x = boxes[:, 0]y = boxes[:, 1]w = boxes[:, 2] - boxes[:, 0]h = boxes[:, 3] - boxes[:, 1]areas = w * horder = scores.argsort()[::-1]keep = []while order.size > 0:i = order[0]keep.append(i)xx1 = np.maximum(x[i], x[order[1:]])yy1 = np.maximum(y[i], y[order[1:]])xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)inter = w1 * h1ovr = inter / (areas[i] + areas[order[1:]] - inter)inds = np.where(ovr <= NMS_THRESH)[0]order = order[inds + 1]keep = np.array(keep)return keepdef yolov5_post_process(input_data):masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],[59, 119], [116, 90], [156, 198], [373, 326]]boxes, classes, scores = [], [], []for input, mask in zip(input_data, masks):b, c, s = process(input, mask, anchors)b, c, s = filter_boxes(b, c, s)boxes.append(b)classes.append(c)scores.append(s)boxes = np.concatenate(boxes)boxes = xywh2xyxy(boxes)classes = np.concatenate(classes)scores = np.concatenate(scores)# nmsnboxes, nclasses, nscores = [], [], []for c in set(classes):inds = np.where(classes == c)b = boxes[inds]c = classes[inds]s = scores[inds]keep = nms_boxes(b, s)if len(keep) != 0:nboxes.append(b[keep])nclasses.append(c[keep])nscores.append(s[keep])if not nclasses and not nscores:return None, None, Noneboxes = np.concatenate(nboxes)classes = np.concatenate(nclasses)scores = np.concatenate(nscores)return boxes, classes, scoresdef draw(image, boxes, scores, classes):"""Draw the boxes on the image.# Argument:image: original image.boxes: ndarray, boxes of objects.classes: ndarray, classes of objects.scores: ndarray, scores of objects.all_classes: all classes name."""for box, score, cl in zip(boxes, scores, classes):top, left, right, bottom = boxprint('class: {}, score: {}'.format(CLASSES[cl], score))print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))top = int(top)left = int(left)right = int(right)bottom = int(bottom)cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),(top, left - 6),cv2.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2)def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):# Resize and pad image while meeting stride-multiple constraintsshape = im.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])# Compute paddingratio = r  # ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeim = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn im, ratio, (dw, dh)def process_image(image, outputs):# post processinput0_data = outputs[0]input1_data = outputs[1]input2_data = outputs[2]input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))print('process_image 1')input_data = list()input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))print('process_image 2')boxes, classes, scores = yolov5_post_process(input_data)print('process_image 3')image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)if boxes is not None:draw(image, boxes, scores, classes)print('process_image 4')return image

这一部分有修改,用源码运行不起来。

五、运行测试

1、下载代码

git clone https://github.com/Yinyifeng18/flask-opencv-rknn-rk3568.git

下载后,通过adb或tftp把代码上传到板子上。

在工程代码目录lubancat-flask-opencv-rknn中,执行以下命令:
python main.py

程序打印的提示信息,告诉我们服务器以及开始监听 http://0.0.0.0:5000 的地址,系统的默认网口ip。 如若想退出程序,按下 CTRL+C 。

这里通过在浏览器中输入网址: http://192.168.0.105:5000/login , 来观察一下实验现象。

实验现象如图:

登录完成后,进入到监控界面,点击 开启检测 进入到检测状态。

简单的监控显示和目标检测功能。

6、参考链接

https://github.com/miguelgrinberg/flask-video-streaming

Embedfire/flask-video-streaming-recorder

https://github.com/rockchip-linux/rknn-toolkit2

https://doc.embedfire.com/linux/rk356x/Ai/zh/latest/lubancat_ai/example/camera_demo.html

如有侵权,或需要完整代码,请及时联系博主。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/6795.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

易语言IDE界面美化支持库

易语言IDE界面美化支持库 下载下来可以看到&#xff0c;是一个压缩包。 那么&#xff0c;怎么安装到易语言中呢&#xff1f; 解压之后&#xff0c;得到这两个文件。 直接将clr和lib丢到易语言安装目录中&#xff0c;这样子就安装完成了。 打开易语言&#xff0c;在支持库配置…

在营销的世界,你一定要记住:营满,则销

营销的世界中,有一个非常重要的一件事,这几个字一定要记住: 营满,则销;营未满,则不销。 你有没有把握,这是一个没办法可以复杂的东西,真得看营销人的直觉,营跟销是独立的两件事,营在营势,销是自然而然的。这里, 什么样的客户,看到什么样的产品。会有什么样的抗…

HCIP的学习(11)

OSPF的LSA详解 LSA头部信息 ​ [r2]display ospf lsdb router 1.1.1.1----查看OSPF某一条LSA的详细信息&#xff0c;类型以及LS ID参数。 链路状态老化时间 指一条LSA的老化时间&#xff0c;即存在了多长时间。当一条LSA被始发路由器产生时&#xff0c;该参数值被设定为0之后…

32 OpenCV Harris角点检测

文章目录 cornerHarris 算子示例 角点检测 cornerHarris 算子 void cv::cornerHarris ( InputArray src,OutputArray dst,int blockSize,int ksize,double K,int borderType BORDER_DEFAULT) src:待检测Harris角点的输入图像&#xff0c;图像必须是CV 8U或者CV 32F的单通道…

Maven 在项目的 pom.xml 文件中 指定 阿里云的景象仓库

配置 在 项目的 pom.xml 文件中添加如下配置即可 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation&…

【Unity】位图字体制作工具:蒲公英

一般来讲&#xff0c;如果需要制作位图字体&#xff0c;一般是使用 BMFont 这种第三方工具&#xff1a;BMFont - AngelCode.comhttp://www.angelcode.com/products/bmfont/ 然而这个工具对于非程序员来说&#xff0c;操作起来较为繁琐困难。每次美术修改了字体之后&…

【区块链】比特币架构

比特币架构 2009年1月&#xff0c;在比特币系统论文发表两个月之后&#xff0c;比特币系统正式运行并开放了源码&#xff0c;标志着比特币网络的正式诞生。通过其构建的一个公开透明、去中心化、防篡改的账本系统&#xff0c;比特币开展了一场规模空前的加密数字货币体验。在区…

C++手写协程项目(协程实现线程结构体、线程调度器定义,线程挂起、切换、恢复函数,模块测试)

协程结构体定义 之前我们使用linux下协程函数实现了线程切换&#xff0c;使用的是ucontext_t结构体&#xff0c;和基于这个结构体的四个函数。现在我们要用这些工具来实现我们自己的一个线程结构体&#xff0c;并实现线程调度和线程切换、挂起。 首先我们来实现以下线程结构体…

Linux常用软件安装(JDK、MySQL、Tomcat、Redis)

目录 一、上传与下载工具Filezilla1. filezilla官网 二、JDK安装1. 在opt中创建JDK目录2.上传JDK压缩文件到新建目录中3.卸载系统自代jdk4.安装JDK5.JDK环境变量配置6. 验证是否安装成功 三、安装MySQL1.创建mysql文件夹2.下载mysql安装压缩包3.上传到文件夹里面4. 卸载系统自带…

ThreeJS:光线投射与3D场景交互

光线投射Raycaster 光线投射详细介绍可参考&#xff1a;https://en.wikipedia.org/wiki/Ray_casting&#xff0c; ThreeJS中&#xff0c;提供了Raycaster类&#xff0c;用于进行鼠标拾取&#xff0c;即&#xff1a;当三维场景中鼠标移动时&#xff0c;利用光线投射&#xff0c;…

SpringCloudAlibaba:4.1云原生网关higress的搭建

概述 简介 Higress是基于阿里内部的Envoy Gateway实践沉淀、以开源Istio Envoy为核心构建的下一代云原生网关&#xff0c; 实现了流量网关 微服务网关 安全网关三合一的高集成能力&#xff0c;深度集成Dubbo、Nacos、Sentinel等微服务技术栈 定位 在虚拟化时期的微服务架构…

【DevOps】Jenkins 集成Docker

目录 1. 安装 Docker 和 Jenkins 2. 在 Jenkins 中安装 Docker 插件 3. 配置 Docker 连接 4. 创建 Jenkins Pipeline 5. 示例 Pipeline 脚本 6. 运行 Jenkins Job 7. 扩展功能 8、docker配置测试连接的时候报错处理 将 Docker 与 Jenkins 集成可以实现持续集成和持续交…

目标检测正负样本区分和平衡

1、正负样本定义 rpn和rcnn的正负样本定义都是基于MaxIoUAssigner&#xff0c;只不过定义阈值不一样而已。 MaxIoUAssigner的操作包括4个步骤&#xff1a; 首先初始化时候假设每个anchor的mask都是-1&#xff0c;表示都是忽略anchor 将每个anchor和所有gt的iou的最大Iou小于…

如何为 Nestjs 编写单元测试和 E2E 测试

前言 最近在给一个 nestjs 项目写单元测试&#xff08;Unit Testing&#xff09;和 e2e 测试&#xff08;End-to-End Testing&#xff0c;端到端测试&#xff0c;简称 e2e 测试&#xff09;&#xff0c;这是我第一次给后端项目写测试&#xff0c;发现和之前给前端项目写测试还…

Rust里的Fn/FnMut/FnOnce和闭包匿名函数关系

闭包&#xff08;英语&#xff1a;Closure&#xff09;&#xff0c;又称词法闭包&#xff08;Lexical Closure&#xff09;或函数闭包&#xff08;function closures&#xff09;&#xff0c;是引用了自由变量的函数。这个被引用的自由变量将和这个函数一同存在&#xff0c;即使…

Linux线程安全,互斥量和条件变量

文章目录 一、 Linux线程互斥1. 进程线程间的互斥相关背景概念&#xff08;1&#xff09; 临界资源和临界区&#xff08;2&#xff09; 互斥和原子性 2. 互斥量mutex3. 互斥量的接口4. 互斥量实现原理探究 二、 可重入VS线程安全1. 概念2. 常见的线程不安全的情况3. 常见的线程…

【superset】基于MySQL的BI数据分析可视化实战案例(已更新)

1.熟悉、梳理、总结下superset可视化分析实战案例知识体系,一直想探索有效可用的可视化分析方案,大多收费或不好用,这里,借此机会总结、更新下。 2.复杂度高,遇到并解决的问题较多,尝试了很多次。 3.欢迎批评指正,跪谢一键三连! 基于MySQL的BI数据分析可视化实战案例文…

Crossplane 实战:构建统一的云原生控制平面

1 什么是 Crossplane Crossplane 是一个开源的 Kubernetes 扩展&#xff0c;其核心目标是将 Kubernetes 转化为一个通用的控制平面&#xff0c;使其能够管理和编排分布于 Kubernetes 集群内外的各种资源。通过扩展 Kubernetes 的功能&#xff0c;Crossplane 对 Kubernetes 集群…

rv1126的rknn1.7.5自有模型训练部署

几乎一年前, 弄过一次rv1126的平台的推理部署, 一年时间过去了, rknn从1.7.1, 进化到了1.7.5,原有的代码不太好用了, 因为最近有个客户要做1126平台的推理, 今天下午就花了几个小时, 从头再捋了一遍. 模型训练 这部分, 跟3588平台差不多, clone下yolov5的仓库, 并check out到…

《QT实用小工具·五十五》带有标签、下划线的Material Design风格输入框

1、概述 源码放在文章末尾 该项目实现了一个带有标签动画、焦点动画、正确提示、错误警告的单行输入框控件。下面是demo演示&#xff1a; 项目部分代码如下所示&#xff1a; #ifndef LABELEDEDIT_H #define LABELEDEDIT_H#include <QObject> #include <QWidget>…