机器学习算法(三):K近邻(k-nearest neighbors)

1 KNN的介绍和应用

1.1 KNN的介绍

kNN(k-nearest neighbors),中文翻译K近邻。我们常常听到一个故事:如果要了解一个人的经济水平,只需要知道他最好的5个朋友的经济能力, 对他的这五个人的经济水平求平均就是这个人的经济水平。这句话里面就包含着kNN的算法思想。

示例 :如上图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

1) KNN建立过程

1 给定测试样本,计算它与训练集中的每一个样本的距离。
2 找出距离近期的K个训练样本。作为测试样本的近邻。
3 依据这K个近邻归属的类别来确定样本的类别。

2) 类别的判定

①投票决定,少数服从多数。取类别最多的为测试样本类别。

②加权投票法,依据计算得出距离的远近,对近邻的投票进行加权,距离越近则权重越大,设定权重为距离平方的倒数。

1.2 KNN的应用

KNN虽然很简单,但是人们常说"大道至简",一句"物以类聚,人以群分"就能揭开其面纱,看似简单的KNN即能做分类又能做回归, 还能用来做数据预处理的缺失值填充。由于KNN模型具有很好的解释性,一般情况下对于简单的机器学习问题,我们可以使用KNN作为 Baseline,对于每一个预测结果,我们可以很好的进行解释。在推荐系统中,也有着KNN的影子。例如文章推荐系统中, 对于一个用户A,我们可以把和A最相近的k个用户,浏览过的文章推送给A。

机器学习领域中,数据往往很重要,有句话叫做:"数据决定任务的上限, 模型的目标是无限接近这个上限"。 可以看到好的数据非常重要,但是由于各种原因,我们得到的数据是有缺失的,如果我们能够很好的填充这些缺失值, 就能够得到更好的数据,以至于训练出来更鲁棒的模型。接下来我们就来看看KNN如果做分类,怎么做回归以及怎么填充空值。

2 实验室手册

2.1 实验环境

1. python3.7
2. numpy >= '1.16.4'
3. sklearn >= '0.23.1'

2.2 学习目标

  1. 了解KNN怎么做分类问题
  2. 了解KNN如何做回归
  3. 了解KNN怎么做空值填充, 如何使用knn构建带有空值的pipeline

2.3 代码流程

  1. 二维数据集--knn分类

    • Step1: 库函数导入
    • Step2: 数据导入
    • Step3: 模型训练&可视化
    • Step4: 原理简析
  2. 莺尾花数据集--kNN分类

    • Step1: 库函数导入
    • Step2: 数据导入&分析
    • Step3: 模型训练
    • Step4: 模型预测&可视化
  3. 模拟数据集--kNN回归

    • Step1: 库函数导入
    • Step2: 数据导入&分析
    • Step3: 模型训练&可视化
  4. 马绞痛数据--kNN数据预处理+kNN分类pipeline

    • Step1: 库函数导入
    • Step2: 数据导入&分析
    • Step3: KNNImputer空值填充--使用和原理介绍
    • Step4: KNNImputer空值填充--欧式距离的计算
    • Step5: 基于pipeline模型预测&可视化

2.4 算法实战

2.4.1 Demo数据集--kNN分类

Step1: 库函数导入

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.neighbors import KNeighborsClassifier
from sklearn import datasets

 Step2: 数据导入

# 使用莺尾花数据集的前两维数据,便于数据可视化
iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target

Step3: 模型训练&可视化

k_list = [1, 3, 5, 8, 10, 15]
h = .02
# 创建不同颜色的画布
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])plt.figure(figsize=(15,14))
# 根据不同的k值进行可视化
for ind,k in enumerate(k_list):clf = KNeighborsClassifier(k)clf.fit(X, y)# 画出决策边界x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])# 根据边界填充颜色Z = Z.reshape(xx.shape)plt.subplot(321+ind)  plt.pcolormesh(xx, yy, Z, cmap=cmap_light)# 数据点可视化到画布plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,edgecolor='k', s=20)plt.xlim(xx.min(), xx.max())plt.ylim(yy.min(), yy.max())plt.title("3-Class classification (k = %i)"% k)plt.show()

Step4: 原理简析

如果选择较小的K值,就相当于用较小的领域中的训练实例进行预测,例如当k=1的时候,在分界点位置的数据很容易受到局部的影响,图中蓝色的部分中还有部分绿色块,主要是数据太局部敏感。当k=15的时候,不同的数据基本根据颜色分开,当时进行预测的时候,会直接落到对应的区域,模型相对更加鲁棒。

2.4.2 莺尾花数据集--kNN分类

Step1: 库函数导入

import numpy as np
# 加载莺尾花数据集
from sklearn import datasets
# 导入KNN分类器
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split

 Step2: 数据导入&分析

# 导入莺尾花数据集
iris = datasets.load_iris()X = iris.data
y = iris.target
# 得到训练集合和验证集合, 8: 2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Step3: 模型训练

这里我们设置参数k(n_neighbors)=5, 使用欧式距离(metric=minkowski & p=2)

# 训练模型
clf = KNeighborsClassifier(n_neighbors=5, p=2, metric="minkowski")
clf.fit(X_train, y_train)

Step4:模型预测&可视化

# 预测
X_pred = clf.predict(X_test)
acc = sum(X_pred == y_test) / X_pred.shape[0]
print("预测的准确率ACC: %.3f" % acc)

我们用表格来看一下KNN的训练和预测过程。这里用表格进行可视化:

1. 训练数据[表格对应list]

feat_1feat_2feat_3feat_4label
5.13.51.40.20
4.93.1.40.20
4.73.21.30.20
4.63.11.50.20
6.43.24.51.51
6.93.14.91.51
5.52.34.1.31
6.52.84.61.51
5.82.75.11.92
7.13.5.92.12
6.32.95.61.82
6.53.5.82.22

2. knn.fit(X, y)的过程可以简单认为是表格存储

feat_1feat_2feat_3feat_4label
5.13.51.40.20
4.93.1.40.20
4.73.21.30.20
4.63.11.50.20
6.43.24.51.51
6.93.14.91.51
5.52.34.1.31
6.52.84.61.51
5.82.75.11.92
7.13.5.92.12
6.32.95.61.82
6.53.5.82.22

3. knn.predict(x)预测过程会计算x和所有训练数据的距离 这里我们使用欧式距离进行计算, 预测过程如下

step1: 计算x和所有训练数据的距离

feat_1feat_2feat_3feat_4距离label
5.13.51.40.20.141421360
4.93.1.40.20.608276250
4.73.21.30.20.509901950
4.63.11.50.20.648074070
6.43.24.51.53.663331821
6.93.14.91.54.219004621
5.52.34.1.33.148015251
6.52.84.61.53.849675311
5.82.75.11.94.246174752
7.13.5.92.15.350700892
6.32.95.61.84.730750472
6.53.5.82.25.096076922

step2: 根据距离进行编号排序

距离升序编号feat_1feat_2feat_3feat_4距离label
15.13.51.40.20.141421360
34.93.1.40.20.608276250
24.73.21.30.20.509901950
44.63.11.50.20.648074070
66.43.24.51.53.663331821
86.93.14.91.54.219004621
55.52.34.1.33.148015251
76.52.84.61.53.849675311
95.82.75.11.94.246174752
127.13.5.92.15.350700892
106.32.95.61.84.730750472
116.53.5.82.25.096076922

step3: 我们设置k=5,选择距离最近的k个样本进行投票

距离升序编号feat_1feat_2feat_3feat_4距离label
15.13.51.40.20.141421360
34.93.1.40.20.608276250
24.73.21.30.20.509901950
44.63.11.50.20.648074070
66.43.24.51.53.663331821
86.93.14.91.54.219004621
55.52.34.1.33.148015251
76.52.84.61.53.849675311
95.82.75.11.94.246174752
127.13.5.92.15.350700892
106.32.95.61.84.730750472
116.53.5.82.25.096076922

step4: k近邻的label进行投票

nn_labels = [0, 0, 0, 0, 1] --> 得到最后的结果0。

2.4.3 模拟数据集--kNN回归

Step1: 库函数导入

#Demo来自sklearn官网
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsRegressor

Step2: 数据导入&分析

np.random.seed(0)
# 随机生成40个(0, 1)之前的数,乘以5,再进行升序
X = np.sort(5 * np.random.rand(40, 1), axis=0)
# 创建[0, 5]之间的500个数的等差数列, 作为测试数据
T = np.linspace(0, 5, 500)[:, np.newaxis]
# 使用sin函数得到y值,并拉伸到一维
y = np.sin(X).ravel()
# Add noise to targets[y值增加噪声]
y[::5] += 1 * (0.5 - np.random.rand(8))

Step3: 模型训练&预测可视化

# Fit regression model
# 设置多个k近邻进行比较
n_neighbors = [1, 3, 5, 8, 10, 40]
# 设置图片大小
plt.figure(figsize=(10,20))
for i, k in enumerate(n_neighbors):# 默认使用加权平均进行计算predictorclf = KNeighborsRegressor(n_neighbors=k, p=2, metric="minkowski")# 训练clf.fit(X, y)# 预测y_ = clf.predict(T)plt.subplot(6, 1, i + 1)plt.scatter(X, y, color='red', label='data')plt.plot(T, y_, color='navy', label='prediction')plt.axis('tight')plt.legend()plt.title("KNeighborsRegressor (k = %i)" % (k))plt.tight_layout()
plt.show()

Step4:模型分析

当k=1时,预测的结果只和最近的一个训练样本相关,从预测曲线中可以看出当k很小时候很容易发生过拟合。

当k=40时,预测的结果和最近的40个样本相关,因为我们只有40个样本,此时是所有样本的平均值,此时所有预测值都是均值,很容易发生欠拟合。

一般情况下,使用knn的时候,根据数据规模我们会从[3, 20]之间进行尝试,选择最好的k,例如上图中的[3, 10]相对1和40都是还不错的选择。

2.4.4 马绞痛数据--kNN数据预处理+kNN分类pipeline

# 下载需要用到的数据集
!wget https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/3K/horse-colic.csv
# 下载数据集介绍
!wget https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/3K/horse-colic.names

Step1: 库函数导入

import numpy as np
import pandas as pd
# kNN分类器
from sklearn.neighbors import KNeighborsClassifier
# kNN数据空值填充
from sklearn.impute import KNNImputer
# 计算带有空值的欧式距离
from sklearn.metrics.pairwise import nan_euclidean_distances
# 交叉验证
from sklearn.model_selection import cross_val_score
# KFlod的函数
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

Step2: 数据导入&分析

数据中的'?'表示空值,如果我们使用KNN分类器,'?'不能数值,不能进行计算,因此我们需要进行数据预处理对空值进行填充。

这里我们使用KNNImputer进行空值填充,KNNImputer填充的原来很简单,计算每个样本最近的k个样本,进行空值填充。

我们先来看下KNNImputer的运行原理:

Step3: KNNImputer空值填充--使用和原理介绍

X = [[1, 2, np.nan], [3, 4, 3], [np.nan, 6, 5], [8, 8, 7]]
imputer = KNNImputer(n_neighbors=2, metric='nan_euclidean')
imputer.fit_transform(X)

 

带有空值的欧式距离计算公式

nan_euclidean_distances([[np.nan, 6, 5], [3, 4, 3]], [[3, 4, 3], [1, 2, np.nan], [8, 8, 7]])

Step4: KNNImputer空值填充--欧式距离的计算

样本[1, 2, np.nan] 最近的2个样本是: [3, 4, 3] [np.nan, 6, 5], 计算距离的时候使用欧式距离,只关注非空样本。 [1, 2, np.nan] 填充之后得到 [1, 2, (3 + 5) / 2] = [1, 2, 4]

正常的欧式距离

带有空值的欧式聚类

 

只计算所有非空的值,对所有空加权到非空值的计算上,上例中,我们看到一个有3维,只有第二维全部非空, 将第一维和第三维的计算加到第二维上,所有需要乘以3。

表格中距离度量使用的是带有空值欧式距离计算相似度,使用简单的加权平均进行填充。

带有空值的样本最相近的样本1最相近的样本2填充之后的值
[1, 2, np.nan][3, 4, 3]; 3.46[np.nan, 6, 5]; 6.93[1, 2, 4]
[np.nan, 6, 5][3, 4, 3]; 3.46[8, 8, 7]; 3.46[5.5, 6, 5]
# load dataset, 将?变成空值
input_file = './horse-colic.csv'
df_data = pd.read_csv(input_file, header=None, na_values='?')# 得到训练数据和label, 第23列表示是否发生病变, 1: 表示Yes; 2: 表示No. 
data = df_data.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]# 查看所有特征的缺失值个数和缺失率
for i in range(df_data.shape[1]):n_miss = df_data[[i]].isnull().sum()perc = n_miss / df_data.shape[0] * 100if n_miss.values[0] > 0:print('>Feat: %d, Missing: %d, Missing ratio: (%.2f%%)' % (i, n_miss, perc))# 查看总的空值个数
print('KNNImputer before Missing: %d' % sum(np.isnan(X).flatten()))
# 定义 knnimputer
imputer = KNNImputer()
# 填充数据集中的空值
imputer.fit(X)
# 转换数据集
Xtrans = imputer.transform(X)
# 打印转化后的数据集的空值
print('KNNImputer after Missing: %d' % sum(np.isnan(Xtrans).flatten()))

 

Step5: 基于pipeline模型训练&可视化

什么是Pipeline, 我这里直接翻译成数据管道。任何有序的操作有可以看做pipeline,例如工厂流水线,对于机器学习模型来说,这就是数据流水线。 是指数据通过管道中的每一个节点,结果除了之后,继续流向下游。对于我们这个例子,数据是有空值,我们会有一个KNNImputer节点用来填充空值, 之后继续流向下一个kNN分类节点,最后输出模型。

results = list()
strategies = [str(i) for i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 18, 20, 21]]
for s in strategies:# create the modeling pipelinepipe = Pipeline(steps=[('imputer', KNNImputer(n_neighbors=int(s))), ('model', KNeighborsClassifier())])# 数据多次随机划分取平均得分scores = []for k in range(20):# 得到训练集合和验证集合, 8: 2X_train, X_test, y_train, y_test = train_test_split(Xtrans, y, test_size=0.2)pipe.fit(X_train, y_train)# 验证modelscore = pipe.score(X_test, y_test)scores.append(score)# 保存resultsresults.append(np.array(scores))print('>k: %s, Acc Mean: %.3f, Std: %.3f' % (s, np.mean(scores), np.std(scores)))
# print(results)
# plot model performance for comparison
plt.boxplot(results, labels=strategies, showmeans=True)
plt.show()

 

Step 6: 结果分析

我们的实验是每个k值下,随机切分20次数据, 从上述的图片中, 根据k值的增加,我们的测试准确率会有先上升再下降再上升的过程。 [3, 5]之间是一个很好的取值,上文我们提到,k很小的时候会发生过拟合,k很大时候会发生欠拟合,当遇到第一下降节点,此时我们可以 简单认为不在发生过拟合,取当前的k值即可。

2.5 KNN原理介绍

k近邻方法是一种惰性学习算法,可以用于回归和分类,它的主要思想是投票机制,对于一个测试实例x, 我们在有标签的训练数据集上找到和最相近的k个数据,用他们的label进行投票,分类问题则进行表决投票,回归问题使用加权平均或者直接平均的方法。knn算法中我们最需要关注两个问题:k值的选择和距离的计算。 kNN中的k是一个超参数,需要我们进行指定,一般情况下这个k和数据有很大关系,都是交叉验证进行选择,但是建议使用交叉验证的时候,k∈[2,20],使用交叉验证得到一个很好的k值。

k值还可以表示我们的模型复杂度,当k值越小意味着模型复杂度表达,更容易过拟合,(用极少树的样例来绝对这个预测的结果,很容易产生偏见,这就是过拟合)。我们有这样一句话,k值越多学习的估计误差越小,但是学习的近似误差就会增大。


距离/相似度的计算:

样本之间的距离的计算,我们一般使用对于一般使用Lp距离进行计算。当p=1时候,称为曼哈顿距离(Manhattan distance),当p=2时候,称为欧氏距离(Euclidean distance),当p=∞时候,称为极大距离(infty distance), 表示各个坐标的距离最大值,另外也包含夹角余弦等方法。

一般采用欧式距离较多,但是文本分类则倾向于使用余弦来计算相似度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/67925.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大语言模型兵马未动,数据准备粮草先行

​从OpenAI正式发布ChatGPT开始,大型语言模型(LLM)就变得风靡一时。对业界和吃瓜群众来说,这种技术最大的吸引力来自于理解、解释和生成人类语言的能力,毕竟这曾被认为是人类独有的技能。类似CoPilot这样的工具正在迅速…

Network Compression(李宏毅)机器学习 2023 Spring HW13 (Boss Baseline)

1. Introduction to Network Compression 深度学习中的网络压缩是指在保持神经网络性能的同时,减少其规模的过程。这非常重要,因为深度学习模型,尤其是用于自然语言处理或计算机视觉的大型模型,训练和部署的计算成本可能非常高。网络压缩通过降低内存占用并加快推理速度,…

UnityDots学习(二)

在一里已经概述了什么是Dots,已经如果使用它,我们要做的思维转变。 简单总结下: Dots使用了计算器多核,已经3级缓存的优势,在此基础上使用Brust编译器对各个平台实现了代码优化。从而达到了加速提升的效果。 我们要…

Linux (CentOS) 安装 Docker 和 Docker Compose

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall ︱vue3-element-admin︱youlai-boot︱vue-uniapp-template 🌺 仓库主页: GitCode︱ Gitee ︱ Github 💖 欢迎点赞 👍 收藏 ⭐评论 …

c++ 预备

目录 前言 一,知识点的补充 二,c语言与c 三,面向对象的三大特点 前言 将进入c的学习,接下来是对于c的预备和c的一些预习 一,知识点的补充 1 标识符 标识符不能为关键字 标识符只能由下划线,数字&#xf…

SpringBoot项目实战(41)--Beetl网页使用自定义函数获取新闻列表

在Beetl页面中可以使用自定义的函数从后台新闻列表中获取新闻数据展示到页面上。例如我们可以从后台新闻表中获取新闻按照下面的格式展示&#xff1a; <li><a href"#">东亚非遗展即将盛妆亮相 揭起盖头先睹为快</a></li><li><a hre…

从零开始开发纯血鸿蒙应用之多签名证书管理

从零开始开发纯血鸿蒙应用 一、前言二、鸿蒙应用配置签名证书的方式1、自动获取签名证书2、手动配置签名证书 三、多签名证书配置和使用四、多证书使用 一、前言 由于手机操作系统&#xff0c;比电脑操作系统脆弱很多&#xff0c;同时&#xff0c;由于手机的便携性&#xff0c…

数据结构初阶---排序

一、排序相关概念与运用 1.排序相关概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的…

系统看门狗配置--以ubuntu为例

linux系统配置看门狗 以 ubuntu 系统配置看门狗为例 配置看门狗使用的脚本文件&#xff0c;需要使用管理员权限来执行&#xff1a; 配置是&#xff1a;系统每 30S 喂一次狗&#xff0c;超过 60S 不进行投喂&#xff0c;就会自动重启。 1. 系统脚本内容&#xff1a; #!/bin/b…

opencv的NLM去噪算法

NLM&#xff08;Non-Local Means&#xff09;去噪算法是一种基于图像块&#xff08;patch&#xff09;相似性的去噪方法。其基本原理是&#xff1a; 图像块相似性&#xff1a;算法首先定义了一个搜索窗口&#xff08;search window&#xff09;&#xff0c;然后在该窗口内寻找…

Docker运维高级容器技术知识点总结

1、虚拟机部署和容器化部署的区别是什么&#xff1f; 1、技术基础&#xff1a; <1>.虚拟化技术在物理硬件上创建虚拟机&#xff0c;每台虚拟机运行自己完整的操作系统、从而实现资源隔离。 <2>.容器化技术&#xff1a;将应用程序打包在容器内&#xff0c;在进程空间…

双模充电桩发展前景:解锁新能源汽车未来的金钥匙,市场潜力无限

随着全球能源转型的浪潮席卷而来&#xff0c;新能源汽车行业正以前所未有的速度蓬勃发展&#xff0c;而作为其坚实后盾的充电基础设施&#xff0c;特别是双模充电桩&#xff0c;正逐渐成为推动这一变革的关键力量。本文将从多维度深入剖析双模充电桩的市场现状、显著优势、驱动…

python3GUI--大屏可视化-传染病督导平台 By:PyQt5

文章目录 一&#xff0e;前言二&#xff0e;预览三&#xff0e;软件组成&开发心得1.样式&使用方法2.左侧表格实现3.设计4.学习5.体验效果 四&#xff0e;代码分享1.环形渐变进度组件2.自定义图片的背景组件 五&#xff0e;总结 大小&#xff1a;60.9 M&#xff0c;软件…

某漫画网站JS逆向反混淆流程分析

文章目录 1. 写在前面1. 接口分析2. 反混淆分析 【&#x1f3e0;作者主页】&#xff1a;吴秋霖 【&#x1f4bc;作者介绍】&#xff1a;擅长爬虫与JS加密逆向分析&#xff01;Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Pyth…

ffmpeg aac s16 encode_audio.c

用ffmpeg库时&#xff0c;用代码对pcm内容采用aac编码进行压缩&#xff0c;出现如下错误。 [aac 000002bc5edc6e40] Format aac detected only with low score of 1, misdetection possible! [aac 000002bc5edc8140] Error decoding AAC frame header. [aac 000002bc5edc81…

深度学习的原理和应用

一、深度学习的原理 深度学习是机器学习领域的一个重要分支&#xff0c;其原理基于多层神经网络结构和优化算法。以下是深度学习的核心原理&#xff1a; 多层神经网络结构&#xff1a;深度学习模型通常由多层神经元组成&#xff0c;这些神经元通过权重和偏置相互连接。输入数据…

mv指令详解

&#x1f3dd;️专栏&#xff1a;计算机操作系统 &#x1f305;主页&#xff1a;猫咪-9527-CSDN博客 “欲穷千里目&#xff0c;更上一层楼。会当凌绝顶&#xff0c;一览众山小。” 目录 基本语法 主要功能 常用选项详解 1. 移动文件或目录 2. 重命名文件或目录 3. -i&am…

5 分布式ID

这里讲一个比较常用的分布式防重复的ID生成策略&#xff0c;雪花算法 一个用户体量比较大的分布式系统必然伴随着分表分库&#xff0c;分机房部署&#xff0c;单体的部署方式肯定是承载不了这么大的体量。 雪花算法的结构说明 如下图所示: 雪花算法组成 从上图我们可以看…

怎么实现Redis的高可用?

大家好&#xff0c;我是锋哥。今天分享关于【怎么实现Redis的高可用&#xff1f;】面试题。希望对大家有帮助&#xff1b; 怎么实现Redis的高可用&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 为了实现 Redis 的高可用性&#xff0c;我们需要保证在发…

牛客网刷题 ——C语言初阶(6指针)——BC106 上三角矩阵判定

1. 题目描述——BC106 上三角矩阵判定 牛客网OJ题链接 描述 KiKi想知道一个n阶方矩是否为上三角矩阵&#xff0c;请帮他编程判定。上三角矩阵即主对角线以下的元素都为0的矩阵&#xff0c;主对角线为从矩阵的左上角至右下角的连线。 示例 输入&#xff1a; 3 1 2 3 0 4 5 0 0…