UnityDots学习(二)

在一里已经概述了什么是Dots,已经如果使用它,我们要做的思维转变。

简单总结下:

Dots使用了计算器多核,已经3级缓存的优势,在此基础上使用Brust编译器对各个平台实现了代码优化。从而达到了加速提升的效果。

我们要从面相对象的思维转变为面相数据的思维。

此篇开始记录学习Unity官网学习思路。

Job

我的理解是他是可以单独在某个核上跑的一段逻辑程序。

在Unity上大概张这样

 public struct FindNearestJob : IJob{[ReadOnly] public NativeArray<float3> TargetPositions;[ReadOnly] public NativeArray<float3> SeekerPositions;public NativeArray<float3> NearestTargetPositions;// 'Execute' is the only method of the IJob interface.// When a worker thread executes the job, it calls this method.public void Execute(){// Compute the square distance from each seeker to every target.for (int i = 0; i < SeekerPositions.Length; i++){float3 seekerPos = SeekerPositions[i];float nearestDistSq = float.MaxValue;for (int j = 0; j < TargetPositions.Length; j++){float3 targetPos = TargetPositions[j];float distSq = math.distancesq(seekerPos, targetPos);if (distSq < nearestDistSq){nearestDistSq = distSq;NearestTargetPositions[i] = targetPos;}}}}}

当某些逻辑依赖别的逻辑完成后执行,需要实现的代码逻辑如下

更复杂点的:

Unity也可以按指定批次完成Job如下:

Entities and Components

Component是一个数据单元

定义大概如下:

 public struct MoveComponent: IComponentData{public float3 Direct;public float Speed;}

需要注意的是,尽可能使用非托管对象。否则会出现无法被Brust编译。并且不能使用3级缓存存储数据。导致无法将Dots功能效率最大化。

Entity是Component的一个集合。受到World管理,每个World下每个Entity的Id是唯一的。由EntityManager进行管理

World会对持有不同类型数量的Entity进行分块管理如下所示

同时有ABC组件在1号块,AB在2号块,AC在3号块。

如果这时候我从ABC组件取到1个Entity实体删除其C组件。那么他会移动到2号块。这么处理的好处是数据Entity可以分批次直接处理。免得中间处理大量复杂的过程。

对于Entity的查询,提供了二种方式,一个为单个的,一个为符合条件的

Systems

理解为处理World下每个Entity的逻辑。简单理解为xxManager

张的如下所示

定义执行顺序

可以查看执行顺序

Baking

首先Baking是把Unity的如Gameobject这种托管对象转换为非托管对象,进而可以使用Dots进行编译加速的一个过程。

Unity提供了二种烘焙方式

SubScene实现方式:

多出来的子场景可以创建物体。这样运行时,unity自动把subscene的东西进行Baking

自己控制实现Baking:

把脚本挂到对应GameObject上运行时就Baking该物体了

下一篇学习记录实战内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/67922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux (CentOS) 安装 Docker 和 Docker Compose

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall ︱vue3-element-admin︱youlai-boot︱vue-uniapp-template &#x1f33a; 仓库主页&#xff1a; GitCode︱ Gitee ︱ Github &#x1f496; 欢迎点赞 &#x1f44d; 收藏 ⭐评论 …

c++ 预备

目录 前言 一&#xff0c;知识点的补充 二&#xff0c;c语言与c 三&#xff0c;面向对象的三大特点 前言 将进入c的学习&#xff0c;接下来是对于c的预备和c的一些预习 一&#xff0c;知识点的补充 1 标识符 标识符不能为关键字 标识符只能由下划线&#xff0c;数字&#xf…

SpringBoot项目实战(41)--Beetl网页使用自定义函数获取新闻列表

在Beetl页面中可以使用自定义的函数从后台新闻列表中获取新闻数据展示到页面上。例如我们可以从后台新闻表中获取新闻按照下面的格式展示&#xff1a; <li><a href"#">东亚非遗展即将盛妆亮相 揭起盖头先睹为快</a></li><li><a hre…

从零开始开发纯血鸿蒙应用之多签名证书管理

从零开始开发纯血鸿蒙应用 一、前言二、鸿蒙应用配置签名证书的方式1、自动获取签名证书2、手动配置签名证书 三、多签名证书配置和使用四、多证书使用 一、前言 由于手机操作系统&#xff0c;比电脑操作系统脆弱很多&#xff0c;同时&#xff0c;由于手机的便携性&#xff0c…

数据结构初阶---排序

一、排序相关概念与运用 1.排序相关概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的…

系统看门狗配置--以ubuntu为例

linux系统配置看门狗 以 ubuntu 系统配置看门狗为例 配置看门狗使用的脚本文件&#xff0c;需要使用管理员权限来执行&#xff1a; 配置是&#xff1a;系统每 30S 喂一次狗&#xff0c;超过 60S 不进行投喂&#xff0c;就会自动重启。 1. 系统脚本内容&#xff1a; #!/bin/b…

opencv的NLM去噪算法

NLM&#xff08;Non-Local Means&#xff09;去噪算法是一种基于图像块&#xff08;patch&#xff09;相似性的去噪方法。其基本原理是&#xff1a; 图像块相似性&#xff1a;算法首先定义了一个搜索窗口&#xff08;search window&#xff09;&#xff0c;然后在该窗口内寻找…

Docker运维高级容器技术知识点总结

1、虚拟机部署和容器化部署的区别是什么&#xff1f; 1、技术基础&#xff1a; <1>.虚拟化技术在物理硬件上创建虚拟机&#xff0c;每台虚拟机运行自己完整的操作系统、从而实现资源隔离。 <2>.容器化技术&#xff1a;将应用程序打包在容器内&#xff0c;在进程空间…

双模充电桩发展前景:解锁新能源汽车未来的金钥匙,市场潜力无限

随着全球能源转型的浪潮席卷而来&#xff0c;新能源汽车行业正以前所未有的速度蓬勃发展&#xff0c;而作为其坚实后盾的充电基础设施&#xff0c;特别是双模充电桩&#xff0c;正逐渐成为推动这一变革的关键力量。本文将从多维度深入剖析双模充电桩的市场现状、显著优势、驱动…

python3GUI--大屏可视化-传染病督导平台 By:PyQt5

文章目录 一&#xff0e;前言二&#xff0e;预览三&#xff0e;软件组成&开发心得1.样式&使用方法2.左侧表格实现3.设计4.学习5.体验效果 四&#xff0e;代码分享1.环形渐变进度组件2.自定义图片的背景组件 五&#xff0e;总结 大小&#xff1a;60.9 M&#xff0c;软件…

某漫画网站JS逆向反混淆流程分析

文章目录 1. 写在前面1. 接口分析2. 反混淆分析 【&#x1f3e0;作者主页】&#xff1a;吴秋霖 【&#x1f4bc;作者介绍】&#xff1a;擅长爬虫与JS加密逆向分析&#xff01;Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Pyth…

ffmpeg aac s16 encode_audio.c

用ffmpeg库时&#xff0c;用代码对pcm内容采用aac编码进行压缩&#xff0c;出现如下错误。 [aac 000002bc5edc6e40] Format aac detected only with low score of 1, misdetection possible! [aac 000002bc5edc8140] Error decoding AAC frame header. [aac 000002bc5edc81…

深度学习的原理和应用

一、深度学习的原理 深度学习是机器学习领域的一个重要分支&#xff0c;其原理基于多层神经网络结构和优化算法。以下是深度学习的核心原理&#xff1a; 多层神经网络结构&#xff1a;深度学习模型通常由多层神经元组成&#xff0c;这些神经元通过权重和偏置相互连接。输入数据…

mv指令详解

&#x1f3dd;️专栏&#xff1a;计算机操作系统 &#x1f305;主页&#xff1a;猫咪-9527-CSDN博客 “欲穷千里目&#xff0c;更上一层楼。会当凌绝顶&#xff0c;一览众山小。” 目录 基本语法 主要功能 常用选项详解 1. 移动文件或目录 2. 重命名文件或目录 3. -i&am…

5 分布式ID

这里讲一个比较常用的分布式防重复的ID生成策略&#xff0c;雪花算法 一个用户体量比较大的分布式系统必然伴随着分表分库&#xff0c;分机房部署&#xff0c;单体的部署方式肯定是承载不了这么大的体量。 雪花算法的结构说明 如下图所示: 雪花算法组成 从上图我们可以看…

怎么实现Redis的高可用?

大家好&#xff0c;我是锋哥。今天分享关于【怎么实现Redis的高可用&#xff1f;】面试题。希望对大家有帮助&#xff1b; 怎么实现Redis的高可用&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 为了实现 Redis 的高可用性&#xff0c;我们需要保证在发…

牛客网刷题 ——C语言初阶(6指针)——BC106 上三角矩阵判定

1. 题目描述——BC106 上三角矩阵判定 牛客网OJ题链接 描述 KiKi想知道一个n阶方矩是否为上三角矩阵&#xff0c;请帮他编程判定。上三角矩阵即主对角线以下的元素都为0的矩阵&#xff0c;主对角线为从矩阵的左上角至右下角的连线。 示例 输入&#xff1a; 3 1 2 3 0 4 5 0 0…

H266/VVC 帧内预测中 ISP 技术

帧内子划分 ISP ISP 技术是在 JVET-2002-v3 提案中详细介绍其原理&#xff0c;在 VTM8 中完整展示算法。ISP是线基内预测&#xff08;LIP&#xff09;模式的更新版本&#xff0c;它改善了原始方法在编码增益和复杂度之间的权衡&#xff0c;ISP 算法的核心原理就是利用较近的像…

了解npm:JavaScript包管理工具

在JavaScript的生态系统中&#xff0c;npm&#xff08;Node Package Manager&#xff09;无疑是一个举足轻重的存在。它不仅是Node.js的包管理器&#xff0c;更是前端开发不可或缺的一部分&#xff0c;为开发者提供了丰富的包资源、便捷的包管理以及强大的社区支持。本文将深入…

CNN Test Data

由于数据量过大&#xff0c;打不开了 搞一组小的吧。收工睡觉 https://download.csdn.net/download/spencer_tseng/90256048