【深度学习基础之多尺度特征提取】多尺度卷积神经网络(MS-CNN)是如何在深度学习网络中提取多尺度特征的?附代码(二)

【深度学习基础之多尺度特征提取】多尺度卷积神经网络(MS-CNN)是如何在深度学习网络中提取多尺度特征的?附代码(二)

【深度学习基础之多尺度特征提取】多尺度卷积神经网络(MS-CNN)是如何在深度学习网络中提取多尺度特征的?附代码(二)


文章目录

  • 【深度学习基础之多尺度特征提取】多尺度卷积神经网络(MS-CNN)是如何在深度学习网络中提取多尺度特征的?附代码(二)
    • 前言
    • 1. MS-CNN的示例代码实现
    • 2. 总结
  • 测绘遥感、地质主题会议
    • 2025年人文地理与城乡规划国际学术会议(HGURP 2025)
    • 第二届遥感技术与测量测绘国际学术会议(RSTSM 2025)


欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议详细信息可参考:https://ais.cn/u/mmmiUz

前言

多尺度卷积神经网络(MS-CNN) 是一种通过多尺度特征提取来增强卷积神经网络(CNN)能力的方法。通过将图像输入多个卷积层或卷积核以不同的尺度处理,可以让模型同时捕获到不同尺寸的特征。这种方法特别适合处理目标尺度变化较大的任务,如目标检测、语义分割等。

1. MS-CNN的示例代码实现

我们可以通过多个卷积层、不同大小的卷积核来实现一个简单的 MS-CNN 示例。以下是一个使用 PyTorch 实现的多尺度卷积神经网络,其中通过不同的卷积核来提取多尺度特征。

import torch
import torch.nn as nn
import torch.nn.functional as F# 定义一个多尺度卷积神经网络
class MS_CNN(nn.Module):def __init__(self, in_channels=3, out_channels=64):super(MS_CNN, self).__init__()# 多个卷积核来提取不同尺度的特征self.conv1_3x3 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)self.conv1_5x5 = nn.Conv2d(in_channels, out_channels, kernel_size=5, padding=2)self.conv1_7x7 = nn.Conv2d(in_channels, out_channels, kernel_size=7, padding=3)# 合并多个尺度的特征self.conv2 = nn.Conv2d(out_channels * 3, out_channels, kernel_size=1)# 输出分类层(这里假设输出的类别数为10)self.fc = nn.Linear(out_channels, 10)def forward(self, x):# 对输入图像进行不同尺度的卷积操作x1 = F.relu(self.conv1_3x3(x))  # 3x3卷积x2 = F.relu(self.conv1_5x5(x))  # 5x5卷积x3 = F.relu(self.conv1_7x7(x))  # 7x7卷积# 将不同尺度的特征拼接起来x_fused = torch.cat((x1, x2, x3), dim=1)# 对拼接后的特征进行卷积x_fused = F.relu(self.conv2(x_fused))# 对融合后的特征进行池化x_fused = F.adaptive_avg_pool2d(x_fused, (1, 1))  # 全局平均池化x_fused = x_fused.view(x_fused.size(0), -1)  # 展平# 最终输出x_out = self.fc(x_fused)return x_out# 示例使用
if __name__ == "__main__":# 假设输入图像大小为 (batch_size=1, channels=3, height=32, width=32)input_tensor = torch.randn(1, 3, 32, 32)# 初始化MS-CNN模型model = MS_CNN()# 前向传播output = model(input_tensor)# 打印输出的形状print(f"输出形状:{output.shape}")

2. 总结

  • MS-CNN 是通过使用多个不同尺度的卷积核来提取图像中不同尺度的特征,从而增强模型的多尺度特征学习能力。它在目标检测、语义分割等任务中具有较好的性能。
  • 在实际应用中,MS-CNN 可以通过多个卷积核或多层次网络结构来同时处理不同尺度的信息,最终帮助模型更好地理解复杂的图像信息。

测绘遥感、地质主题会议

2025年人文地理与城乡规划国际学术会议(HGURP 2025)

  • www.hgurp.org
  • 2025年1月17-19日,哈尔滨
  • 征集人文地理、经济地理、环境地理、地理信息、城乡规划、城市评估、历史建筑等主题

第二届遥感技术与测量测绘国际学术会议(RSTSM 2025)

  • www.rstsm.net
  • 2025年2月28-3月2日,北京
  • 征集遥感、遥感技术应用、测量测绘、光学遥感、航空影像、人工智能、激光扫描、计算机视觉等主题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/66204.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

非关系型数据库和关系型数据库的区别

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

信息科技伦理与道德1:绪论

1 问题描述 1.1 信息科技的进步给人类生活带来的是什么呢? 功能?智能?陪伴?乐趣?幸福? 基于GPT-3的对话Demo DeepFake 深伪技术:通过神经网络技术进行大样本学习,将个人的声音、面…

安装和配置MySQL教程

以下是在不同操作系统下安装和配置MySQL的详细教程: Windows系统 下载MySQL安装包 访问MySQL官方网站(https://dev.mysql.com/downloads/mysql/),根据你的操作系统版本(32位或64位)下载相应的MySQL Commu…

iOS 11 中的 HEIF 图像格式 - 您需要了解的内容

HEIF,也称为高效图像格式,是iOS 11 之后发布的新图像格式,以能够在不压缩图像质量的情况下以较小尺寸保存照片而闻名。换句话说,HEIF 图像格式可以具有相同或更好的照片质量,同时比 JPEG、PNG、GIF、TIFF 占用更少的设…

windows远程桌面无法连接,报错:“由于没有远程桌面授权服务器可以提供许可证,远程会话被中断。请跟服务器管理员联系”

windows远程桌面无法连接,报错:“由于没有远程桌面授权服务器可以提供许可证,远程会话被中断。请跟服务器管理员联系” 问题描述:解决方法:无法删除条目解决如下:正常激活详见:[RDS远程服务激活…

编译 C++ 程序:分离与保留调试信息以支持 GDB 对 Core 文件的调试

在 C 程序开发过程中,调试是一个非常重要的环节。当程序出现问题,尤其是在生产环境中出现崩溃并生成 Core 文件时,我们需要使用调试工具(如 GDB)对程序进行深入分析,找出问题的根源。为了在需要时能够有效地…

python对mongodb的增删查改

python对mongodb的增删查改 1. 安装 pymongo2. 连接 MongoDB3. 创建(插入)文档插入单个文档插入多个文档 4. 查询文档查询单个文档查询多个文档复杂查询嵌套查询分页条件查询(通用模版) 5. 更新文档更新单个文档更新多个文档更新嵌…

Tesseract5.4.0自定义LSTM训练

准备jTessBoxEditor,然后配置环境变量。 1、将图片转换成tif格式的,这里需要用画图工具另存为; 2、生成box文件 执行命令: tesseract agv.normal.exp1.tif agv.normal.exp1 -l eng --psm 6 batch.nochop makebox 关于box文件…

Oracle Dataguard(主库为 Oracle 11g 单节点)配置详解(1):Oracle Dataguard 工作原理

Oracle Dataguard(主库为 Oracle 11g 单节点)配置详解(1):Oracle Dataguard 工作原理 目录 Oracle Dataguard(主库为 Oracle 11g 单节点)配置详解(1):Oracle …

Windows系统安装Docker Desktop

文章目录 注意事项安装步骤官网下载软件安装到其它盘符操作(如果就想安装到C盘可以跳过这个步骤, 直接执行文件)等待出现软件安装界面Windows系统的配置软件的一些必要设置(以下设置需要点击apply才能生效,如果点不了,那就是安装后,出现了错误…

从零开始RTSP协议的实时流媒体拉流(pull)的设计与实现(一)

此文为系列文章,此系列主要讲解RTSP客户端的拉流及播放,文章持续更新,会从rtsp的基本协议讲起,如何一步步实现音视频的拉流过程,包括一系列涉及到的协议,rtsp,sdp, rtp(本…

让私域用户付费的三个关键要素

在吸引私域用户付费的过程中,有三个关键要素是不可忽视的。 下面,就一起来看看是哪三个要素,帮助你更好地挖掘私域用户的潜力。 价值提供:真正解决用户的问题 简单来说,用户愿意为他们认为有价值的东西付费。当你的…

Qt:子线程在程序退出时的操作

在Qt中可以使用线程指针对子线程进行操作。子线程可以使用使用基本指针&#xff0c;shared_ptr&#xff0c;两种指针进行操作&#xff08;QSharedPointer指针操作有问题还未解决&#xff0c;先不讲&#xff09;。 // c标准库 shared_ptr<QThread> thread_;// 基本指针 Q…

特殊车辆检测数据集VOC+YOLO格式2730张3类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;2730 标注数量(xml文件个数)&#xff1a;2730 标注数量(txt文件个数)&#xff1a;2730 …

LookingGlass使用

背景 Looking Glass 是一款开源应用程序&#xff0c;可以直接使用显卡直通的windows虚拟机。 常见环境是Linux hostwindows guest&#xff0c;基本部署结构图&#xff1a; 编译 git clone --recursive https://github.com/gnif/LookingGlass.git编译client mkdir client/b…

Ceph 手动部署(CentOS9)

#Ceph手动部署、CentOS9、squid版本、数字版本19.2.0 #部署服务:块、对象、文件 一、部署前规划 1、兼容性确认 2、资源规划 节点类型节点名称操作系统CPU/内存硬盘网络组件安装集群节点CephAdm01CentOS94U/8GOS:40G,OSD:2*100GIP1:192.169.0.9(管理&集群),IP2:…

如何优化亚马逊广告以提高ROI?

在竞争激烈的亚马逊市场中&#xff0c;优化广告以提高投资回报率&#xff08;ROI&#xff09;是卖家的关键任务。以下是一些实用的策略&#xff1a; 一、精准的关键词研究与选择 深入了解产品特性和目标受众 详细分析产品的功能、用途、优势和适用人群。例如&#xff0c;如果你…

CSS学习记录23

CSS用户界面 CSS调整大小 resize 属性规定元素是否应&#xff08;以及如何&#xff09;被用户调整大小。下例只允许用户调整 <div> 元素的宽度&#xff1a; div {resize: horizontal;overflow: auto; } 下例只允许用户调整 <div> 元素的高度&#xff1a; div {…

Linux菜鸟级常用的基本指令和基础知识

前言:很多Linux初学者都会头疼于指令太多记不住&#xff0c;笔者刚学习Linux时也是如此&#xff0c;学习Linux指令时&#xff0c;学了后面的指令&#xff0c;前面的指令也会忘的差不多了&#xff0c;针对于以上这些情况&#xff0c;笔者今天来分享一篇Linux菜鸟级的常用指令的博…

【数据仓库】hive on Tez配置

hive on Tez 搭建 前提是hive4.0hadoop3.2.2数仓已搭建完成&#xff0c;现在只是更换其执行引擎 为Tez。搭建可参考【数据仓库】hive hadoop数仓搭建实践文章。 Tez 下载 下载地址 https://archive.apache.org/dist/tez/ 官网地址 https://tez.apache.org/releases/apac…