代码随想录算法训练营DAY40\DAY41|C++动态规划Part.3|343.整数拆分、96.不同的二叉搜索树

DAY40休息日,本篇为DAY41的内容

文章目录

  • 343.整数拆分
    • 思路
      • dp含义
      • 递推公式(难点)
      • 初始化
      • 遍历顺序
      • 打印
    • CPP代码
    • 数学方法
    • 归纳证明法
  • 96.不同的二叉搜索树
    • 思路
      • dp含义
      • 递推公式
      • 初始化
      • 遍历顺序
      • 打印
    • CPP代码
    • 题目总结

343.整数拆分

力扣题目链接

文章讲解:343.整数拆分

视频讲解:动态规划,本题关键在于理解递推公式!| LeetCode:343. 整数拆分

状态:哥们儿把从1-10的整数拆分全写出来了,思路嘎嘎有,要想乘积最大,必须把数字全部拆成2或者3。但是,如何跟动态规划联系起来呢?

看完题解出来了,哥们儿那个属于是数学方法,但是差很多完整的思考,后文会给予证明。

我认为本题更适合使用数学方法来解决,也就是数学归纳法

看到这个题目,会疑问应该拆成两个还是三个还是四个呢?

之前我们说过,动态规划用来解包含重叠子问题的某问题,那么这里直接试试动态规划。

思路

在之前你走过拆分2-10的流程吗,找到什么感觉了吗?当我们在拆10的时候,可能把10拆成4、6(或者是其他的什么),我们之前也拆过4和6,自然拆成2、2、3、3。发现了吗,我们拆10这个问题包含了重叠子问题(拆4和6),所以试试动态规划吧!

dp含义

自然一点的想法:

dp[i]:拆分数字i,可以得到的最大乘积为dp[i]

递推公式(难点)

递推公式的重难点是什么呢?先思考我们如何才能得到dp[i]

首先我们拆分i,肯定首先拆成两个数字,也就是j(i - j)j是遍历1j的所有情况;

如果拆成3个数及3个数以上,我们就是j * dp[i - j],该式子的含义就是把i拆成三个或三个以上数字(因为dp[i - j]包含了所有的拆分方法,且至少拆成两个)

NOTE

为什么公式j * dp[i-j]是成分成2个以上数字呢?

首先我们要搞明白dp[i - j]的含义,拆分数字i-j,可以得到的最大乘积,他就暗含了将i-j拆分成两个或两个以上数字。

为什么j就不拆分了呢?

由于我们是从1开始一直遍历到j,所以已经暗含了拆分j的情况,因为我们还有旁边的dp[i-j]来给j补蛋呢!

综上所述, d p [ i ] = m a x ( d p [ i ] , m a x ( ( i − j ) ∗ j , d p [ i − j ] ∗ j ) ) dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j)) dp[i]=max(dp[i],max((ij)j,dp[ij]j))

为什么这里多了个max(dp[i], ...)呢?因为我们之前说过,我们需要遍历1~j的数,所以为了保留每个i当前最大成绩,与新遍历的j上下文做比较,保持dp[i]的最大值更新或者不更新。

初始化

本题中,我们只初始化dp[2]=1,因为严格来说,dp[0] dp[1]不应该初始化,因为这在我们定义dp数组含义时就确定了这俩是没有意义的数值,题中给定的n也是大于等于2的。

遍历顺序

还记得上面我们说把1遍历到j不,这里我们需要两层遍历,对于dp数组那肯定是从左到右了;关于j应该是从1开始,因为从0开始仍然是没有意义的,难道我们还把一个数拆成0和其他数吗?

for (int i = 3; i <= n; i++) {for (int j = 1; j < i - 1; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}
}
//再优化一下子
for (int i = 3; i <= n ; i++) {for (int j = 1; j <= i / 2; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}
}

打印

CPP代码

class Solution {
public:int integerBreak(int n) {vector<int> dp(n + 1, 0);dp[2] = 1;for (int i = 3; i <= n ; i++) {for (int j = 1; j <= i / 2; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}}return dp[n];}
};

数学方法

归纳证明法

我在写1-10的最优拆分方案过程中,确实感受到了以下规律,这里是leetcode的官解归纳证明法

  • 第一步:证明最优的拆分方案中不会出现大于 4的整数。

假设出现了大于 4 4 4 的整数 x x x,由于$ 2(x−2)>x 在 在 x>4$时成立,将 x拆分成 2和 x−2可以增大乘积。因此最优的拆分方案中不会出现大于 4 的整数。

  • 第二步:证明最优拆分方案中可以不出现整数4

很明显,出现4的话可以用 2 × 2 2 \times2 2×2代替

此时,可知最优的拆分方案只会出现1、2、3三个数字

  • 第三步:证明 n ≥ 5 n \geq5 n5时,最优的拆分方案不会出现整数1.

n ≥ 5 n \geq5 n5时,如果出现了整数1,那么拆分中剩余的数的和为 n − 1 ≥ 4 n-1 \geq4 n14,对应这至少两个整数1和一个大于等于4的数。我们将其中任意一个整数 x x x加上1,乘积都会增大。

此时,可知当 n ≥ 5 n \geq5 n5时,最优拆分方案只有2和3

  • 第三步:证明当 n ≥ 5 n \geq5 n5时,最优的拆分方案中2的个数不会超过3个

如果出现了超过 3 个 2,那么将它们转换成 2 个 3,可以增大乘积,即 3 × 3 > 2 × 2 × 2 3 \times 3 > 2 \times 2 \times 2 3×3>2×2×2

综上, n ≥ 5 n \geq5 n5的最优拆分方案就唯一了,这是因为当最优的拆分方案中2的个数分别为0,1,2个时,就对应着n除以3的余数分别为0,2,1的情况。

并且 n = 4 n = 4 n=4时的拆分方案也可以放入分类讨论的结果;当 2 ≤ n ≤ 3 2\leq n \leq3 2n3时,只有唯一的拆分方案 1 × ( n − 1 ) 1 \times (n - 1) 1×(n1)

int integerBreak(int n) {int (n <= 3) {return n - 1;}int quotient = n / 3; //商int remainder = n % 3; //余数if (remainder == 0) {	 //能被3整除,全部拆成3return (int)pow(3, quotient);}else if (remainder == 1){	//余1return (int)pow(3, quotient - 1) * 4}else {	//余2return (int)pow(3, quotient) * 2;}
}

96.不同的二叉搜索树

力扣题目链接

文章讲解:96.不同的二叉搜索树

视频讲解:动态规划找到子状态之间的关系很重要!| LeetCode:96.不同的二叉搜索树

状态:这个动态规划我知道!有点明显。dp数组肯定是1维的,含义就是组成的不同BST的个数,关于递推公式我列举了n等于1-4时各能组成多少个BST,在写4时发现了大致的规律,但是没能力抽象成数学公式

思路

直观上,我们肯定是要把n=1、2、3直接拉出来比较的。

n=3时,

  • 当1为头结点,其右子树有两个结点,结点布局与n=2时一致
  • 当2为头结点,其左右子树都只有一个结点,布局和n=1一致
  • 当3位头结点,其左子树有两个节点,和n=2时一致

到这里我们就完全挖掘住了重叠的子问题。

dp[3] = 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]

有1个元素的搜索树数量就是dp[1]

有0个元素的搜索树数量就是dp[0]

综上 d p [ 3 ] = d p [ 2 ] ∗ d p [ 0 ] + d p [ 1 ] ∗ d p [ 1 ] + d p [ 0 ] ∗ d p [ 2 ] dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2] dp[3]=dp[2]dp[0]+dp[1]dp[1]+dp[0]dp[2].。

同理, d p [ 4 ] = d p [ 0 ] ∗ d p [ 3 ] + d p [ 1 ] ∗ d p [ 2 ] + d p [ 2 ] ∗ d p [ 1 ] + d p [ 3 ] ∗ d p [ 0 ] dp[4] = dp[0]*dp[3] + dp[1]*dp[2] + dp[2]*dp[1]+ dp[3]*dp[0] dp[4]=dp[0]dp[3]+dp[1]dp[2]+dp[2]dp[1]+dp[3]dp[0],其中 d p [ 3 ] dp[3] dp[3]可以继续拆分,很显然我们的递推公式应该写成:

d p [ i ] = ∑ j = 1 i d p [ j − 1 ] d p [ i − j ] dp[i] = \sum_{j=1}^{i}dp[j-1]dp[i-j] dp[i]=j=1idp[j1]dp[ij]j-1j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量。很明显需要两个循环,一个大循环i还有一个小循环j

dp含义

dp[i]:表示的是i个不同元素节点组成的二叉搜索树的个数为dp[i]

递推公式

上文分析中,已经给出了基本的递推公式

dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1j为头结点左子树节点数量i-j 为以j为头结点右子树节点数量

初始化

从递推公式也可以看出来,本题其实只要初始化dp[0]就可以了,他是推导的基础。

从定义上来讲,空结点也是一颗二叉树,也是一颗二叉搜索树。

综上:dp[0] = 1

遍历顺序

首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

for (int i = 1; i <= n; i++){for (int j = 1; j <= i; i++) {dp[i] += dp[j - 1] * dp[i - j];}
}

打印

CPP代码

class Solution {
public:int numTrees(int n) {vector<int> dp(n + 1);dp[0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= i; j++) {dp[i] += dp[j - 1] * dp[i - j];}}return dp[n];}
};
  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( n ) O(n) O(n)

题目总结

本题我们用的是一种近似数学归纳法的推理。

在LeetCode官解中,给出了严格的数学证明,我认为这样的思考过程也是非常需要了解的。

  • LeetCode官解(必须手推一下!也不难!)

  • 卡塔兰数:

    • 卡塔兰数往往解决以下几类问题:
      • 有效的括号组合的数量。
      • 不同的二叉搜索树的数量。
      • 凸多边形划分成三角形的方法数量。
      • 在一个正方形格子图中从一角到另一角的路径数量,这些路径仅向上或向右移动,并且不越过对角线。
    • 递推公式 C 0 = 1 , C n + 1 = 2 ( 2 n + 1 ) n + 2 C n C_0=1, C_{n+1}=\frac{2(2n+1)}{n+2}C_n C0=1,Cn+1=n+22(2n+1)Cn
class Solution {
public:int numTrees(int n) {long long C = 1;for (int i = 0; i < n; ++i) {C = C * 2 * (2 * i + 1) / (i + 2);}return (int)C;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/6534.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows系统下安装Mosquitto的步骤(7)

接前一篇文章&#xff1a;Windows系统下安装Mosquitto的步骤&#xff08;6&#xff09; 本文内容参考&#xff1a; Windows下搭建MQTT服务器_mqtt服务器软件-CSDN博客 Enable SSL/TLS Connection | EMQX Enterprise Docs 特此致谢&#xff01; 上一回讲解了使用MQTTX图形界面…

C/C++开发,opencv-ml库学习,K近邻(KNN)应用

目录 一、k近邻算法 1.1 算法简介 1.2 opencv-k近邻算法 二、cv::ml::KNearest应用 2.1 数据集样本准备 2.2 KNearest应用 2.3 程序编译 2.4 main.cpp全代码 一、k近邻算法 1.1 算法简介 K近邻算法&#xff08;K-Nearest Neighbor&#xff0c;KNN&#xff09;基本原理是…

uniapp 微信开发工具上访问正常,真机调试一直跨域报错

微信小程序真机调试时&#xff0c;出现跨域问题&#xff0c;需要同时在后端设置多种允许跨域的设置&#xff1a; // 指定允许其他域名访问 header(Access-Control-Allow-Origin:*); // 响应类型 header(Access-Control-Allow-Methods:GET,POST,OPTION); // 响应头设置 header(…

【实验】根据docker部署nginx并且实现https

环境准备 systemctl stop firewalld setenforce 0 安装docker #安装依赖包 yum -y install yum-utils device-mapper-persistent-data lvm2 #设置阿里云镜像 yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo #安装最新版…

Unity 编辑器工具 - 资源引用查找器

在Unity项目开发过程中&#xff0c;管理和维护资源之间的引用关系是至关重要的。当然我们项目也是需要这个功能 毕竟项目大了之后查找资源引用还是交给 资源引用查找器 比较好。 功能概述 资源引用查找器允许开发者选择一个目标资源&#xff0c;并在整个项目中查找引用了该资…

记录vue报错问题 in ./node_modules/axios/lib/platform/index.js

今天这个问题困扰了我许久 报错内容如下&#xff1a; 最初一直以为是我没装axios&#xff0c;又重新装了一次&#xff0c;后面才发现是axios版本原因&#xff0c;真的总是被版本的原因困住真的很烦 解决方法如下&#xff1a; 将axios的版本改为1.5.0 1、打开项目的文件夹“…

wireshark的安装使用及相关UDP、TCP、 ARP

初步了解&#xff1a; 进入wireshark后如图&#xff1a; 从图中可以看到很多网络连接在操作的时候我们需要监测哪些 我们可以直接在本地的运行框中输入ipconfig来查看 如图&#xff1a; 从以上图片中我们可以清楚地看到哪些网络连接已经连接的我们只需要按需监测他们即可 但…

JSP与JavaBean

目录 一、JavaBean是什么 二、创建JavaBean 三、在JSP中使用JavaBean 1、按照Java语法直接使用 2、<jsp:useBean>动作 Bean的加载原理 scope属性的不同取值 3、<jsp:setProperty>动作 设置为一个表达式的值或字符序列 通过表单的参数的值来设置Bean的相应…

【C++】STL — List的接口讲解 +详细模拟实现

前言&#xff1a; 本章我们将学习STL中另一个重要的类模板list… list是可以在常数范围内在任意位置进行插入和删除的序列式容器&#xff0c;并且该容器可以前后双向迭代。list的底层是带头双向循环链表结构&#xff0c;双向链表中每个元素存储在互不相关的独立节点中&#xf…

论文笔记ColdDTA:利用数据增强和基于注意力的特征融合进行药物靶标结合亲和力预测

ColdDTA发表在Computers in Biology and Medicine 的一篇一区文章 突出 • 数据增强和基于注意力的特征融合用于药物靶点结合亲和力预测。 • 与其他方法相比&#xff0c;它在 Davis、KIBA 和 BindingDB 数据集上显示出竞争性能。 • 可视化模型权重可以获得可解释的见解。 …

三种滤波(EKF、UKF、CKF)的对比,含MATLAB源代码

使用MATLAB模拟三维的滤波,包含扩展卡尔曼滤波EKF、无迹卡尔曼滤波UKF、容积卡尔曼滤波CKF。 状态更新和观测更新均为非线性的,模拟一定强度的机动性,可用于卡尔曼滤波方法的对比学习,自己修改成需要的运动模型后,可以用于组合导航(GPS+DVL形式)。 运行结果 真值的三轴…

Unity UGUI Image 点击事件忽略空白像素区域

我们会遇到图片不是方形的不规则图片。这个时候我们希望只有点击到图像内容本身才算点击&#xff0c;点击空白区域则不算点击。而UGUI对图片的处理是整个图片都会算作点击区域&#xff0c;这样不能满足于我们的使用需求了。 首先我们需要把图片本身的Read/Write 选项打开 然后…

Meta Llama 3 使用 Hugging Face 和 PyTorch 优化 CPU 推理

原文地址&#xff1a;meta-llama-3-optimized-cpu-inference-with-hugging-face-and-pytorch 了解在 CPU 上部署 Meta* Llama 3 时如何减少模型延迟 2024 年 4 月 19 日 万众期待的 Meta 第三代 Llama 发布了&#xff0c;我想确保你知道如何以最佳方式部署这个最先进的&…

时间日志格式的统一和定制

返回当前格式的时间没有错误&#xff0c;但是不符合中国人的阅读习惯 解决&#xff1a; 方案一&#xff1a;JsonFormat 解决后端 传到 前端格式问题 依赖&#xff1a; <dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jack…

STM32:GPIO输出

文章目录 1、GPIO介绍1.1 GPIO的基本结构1.1 GPIO的位结构 2、 GPIO工作模式3、GPIO标准外设库接口函数3.1 RCC接口函数3.2 GPIO接口函数3.2.1 GPIO的读取函数3.2.1 GPIO的写入函数 4、GPIO的初始化 1、GPIO介绍 GPIO&#xff08;General Purpose Input Output&#xff09;通用…

Python设计模式 - 单例模式

定义 单例模式是一种创建型设计模式&#xff0c; 其主要目的是确保一个类只有一个实例&#xff0c; 并提供一个全局访问点来访问该实例。 结构 应用场景 资源管理&#xff1a;当需要共享某个资源时&#xff0c;例如数据库连接、线程池、日志对象等&#xff0c;可以使用单例模…

【UnityRPG游戏制作】Unity_RPG项目_玩法相关

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;就业…

【算法与数据结构】哈希表

文章目录 引入哈希函数介绍便利店的例子Python3 中的哈希表C 中的哈希表 应用将散列表用于查找防止重复将散列表用作缓存 哈希冲突与解决链地址法开放寻址 总结参考资料写在最后 引入 假设你在一家便利店上班&#xff0c;你不熟悉每种商品的价格&#xff0c;在顾客需要买单是时…

详述DM9161芯片的特性和用法

目录 概述 1. 认识DM9161 2 DM9161的特性 2.1 特性总结 2.2 结构框图 3 功能描述 4 RMII接口 4.1 100Base-TX Operation 4.2 10Base-T Operation 4.3 Auto-Negotiation 4.4 HP Auto-MDIX功能描述 6 DM9161的寄存器 6.1 寄存器列表 6.2 寄存器功能介绍 6.2.1 基本…

ubuntu20中ros与anaconda的python版本冲突问题

系统环境 原本系统是ubuntu20 noetic&#xff0c;python都在/usr/bin中&#xff0c;一共是两个版本的python&#xff0c;一个是python3.8&#xff0c;另一个是python2.7。 问题发现 当安装anaconda后&#xff0c;并且将anaconda的bin目录加入到系统环境中时候&#xff0c;…