线性回归
线性回归是一种较为简单,但十分重要的机器学习方法。掌握线性的原理及求解方法,是深入了解线性回归的基本要求。除此之外,线性回归也是监督学习回归部分的基石,希望你能通过本文掌握机器学习的一些重要的思想。
知识点
- 一元线性回归
- 平方损失函数
- 最小二乘法及代数求解
- 线性回归实现
- 最小二乘法的矩阵推导
前面,我们了解了分类和回归问题的区别。也就是说,回归问题旨在实现对连续值的预测,例如股票的价格、房价的趋势等。比如,下方展现了一个房屋面积和价格的对应关系图。
如上图所示,不同的房屋面积对应着不同的价格。现在,假设我手中有一套房屋想要出售,而出售时就需要预先对房屋进行估值。于是,我想通过上图,也就是其他房屋的售价来判断手中的房产价值是多少。应该怎么做呢?
我采用的方法是这样的。如下图所示,首先画了一条红色的直线,让其大致验证橙色点分布的延伸趋势。然后,我将已知房屋的面积大小对应到红色直线上,也就是蓝色点所在位置。最后,再找到蓝色点对应于房屋的价格作为房屋最终的预估价值。
在上图呈现的这个过程中,通过找到一条直线去拟合数据点的分布趋势的过程,就是线性回归的过程。而线性回归中的「线性」代指线性关系,也就是图中所绘制的红色直线。
此时,你可能心中会有一个疑问。上图中的红色直线是怎么绘制出来的呢?为什么不可以像下图中另外两条绿色虚线,而偏偏要选择红色直线呢?
绿色虚线的确也能反应数据点的分布趋势。所以,找到最适合的那一条红色直线,也是线性回归中需要解决的重要问题之一。
通过上面这个小例子,相信你对线性回归已经有一点点印象了,至少大致明白它能做什么。接下来的内容中,我们将了解线性回归背后的数学原理,以及使用 Python 代码对其实现。
上面针对 线性回归 的介绍内容中,我们列举了一个房屋面积与房价变化的例子。其中,房屋面积为自变量,而房价则为因变量。另外,我们将只有 1 个自变量的线性拟合过程叫做一元线性回归。
下面,我们就生成一组房屋面积和房价变化的示例数据。x 为房屋面积,单位是平方米; y 为房价,单位是万元。
教学代码
import numpy as npx = np.array([56, 72, 69, 88, 102, 86, 76, 79, 94, 74])
y = np.array([92, 102, 86, 110, 130, 99, 96, 102, 105, 92])
示例数据由 10 组房屋面积及价格对应组成。接下来,通过 Matplotlib 绘制数据点,xx, yy 分别对应着横坐标和纵坐标。
from matplotlib import pyplot as plt
%matplotlib inlineplt.scatter(x, y)
plt.xlabel("Area")
plt.ylabel("Price")
正如上面所说,线性回归即通过线性方程去拟合数据点。那么,我们可以令该 1 次函数的表达式为:
公式 (1) 是典型的一元一次函数表达式,我们通过组合不同的 w0 和 w1 的值得到不同的拟合直线。
接下来,对公式 (1)(1) 进行代码实现:
def f(x, w0, w1):y = w0 + w1 * xreturn y
那么,哪一条直线最能反应出数据的变化趋势呢?
想要找出对数据集拟合效果最好的直线,这里再拿出上小节图示进行说明。如下图所示,当我们使用 y(x,w)=w0+w1x 对数据进行拟合时,就能得到拟合的整体误差,即图中蓝色线段的长度总和。如果某一条直线对应的误差值最小,是不是就代表这条直线最能反映数据点的分布趋势呢?
正如上面所说,如果一个数据点为 (xi yi),那么它对应的误差就为:
上面的误差往往也称之为「残差」。但是在机器学习中,我们更喜欢称作「损失」,即真实值和预测值之间的偏离程度。那么,对 nn 个全部数据点而言,其对应的残差损失总和就为:
更进一步,在线性回归中,我们一般使用残差的平方和来表示所有样本点的误差。公式如下
使用残差平方和的好处在于能保证损失始终是累加的正数,而不会存在正负残差抵消的问题。对于公式 (4)(4) 而言,机器学习中有一个专门的名词,那就是「平方损失函数」。而为了得到拟合参数 w0 和 w1 最优的数值,我们的目标就是让公式 (4) 对应的平方损失函数最小。
同样,我们可以对公式 (4) 进行代码实现:
def square_loss(x, y, w0, w1):loss = sum(np.square(y - (w0 + w1*x)))return loss
如果某条直线拟合样本得到的总损失最小,那么这条直线就是最终想得到的结果。而求解损失最小值的过程,就必须用到下面的数学方法了。
最小二乘法是用于求解线性回归拟合参数 w 的一种常用方法。最小二乘法中的「二乘」代表平方,最小二乘也就是最小平方。而这里的平方就是指代上面的平方损失函数。
PS:最小二乘法(Least Squares Method) 是一种数学优化方法,用于在数据中找到最优的模型参数,使得模型预测值与实际观测值之间的误差平方和最小。
在回归问题中,最小二乘法的目标是找到一条最佳拟合线,使得数据点与拟合线之间的距离(误差)平方和达到最小。
简单来讲,最小二乘法也就是求解平方损失函数最小值的方法。那么,到底该怎样求解呢?这就需要使用到高等数学中的知识。推导如下:
首先,平方损失函数为:
我们的目标是求取平方损失函数 min(f) 最小时,对应的 w。首先求 f 的 1 阶偏导数:
到目前为止,已经求出了平方损失函数最小时对应的 w 参数值,这也就是最佳拟合直线。
我们将公式 (7) 求解得到 w 的过程进行代码实现:
def w_calculator(x, y):n = len(x)w1 = (n*sum(x*y) - sum(x)*sum(y))/(n*sum(x*x) - sum(x)*sum(x))w0 = (sum(x*x)*sum(y) - sum(x)*sum(x*y))/(n*sum(x*x)-sum(x)*sum(x))return w0, w1
于是,可以向函数 w_calculator(x, y)
中传入 x 和 y 得到 w0 和 w1 的值。
w_calculator(x, y)
当然,我们也可以求得此时对应的平方损失的值:
w0 = w_calculator(x, y)[0]
w1 = w_calculator(x, y)[1]square_loss(x, y, w0, w1)
接下来,我们尝试将拟合得到的直线绘制到原图中:
x_temp = np.linspace(50, 120, 100) # 绘制直线生成的临时点plt.scatter(x, y)
plt.plot(x_temp, x_temp*w1 + w0, 'r')
从上图可以看出,拟合的效果还是不错的。那么,如果你手中有一套 150 平米的房产想售卖,获得预估报价就只需要带入方程即可:
f(150, w0, w1)
这里得到的预估售价约为 154 万元。这就是一个最小二乘法求解线性回归问题的完整过程。
sk-learn
上面的内容中,我们学习了什么是最小二乘法,以及使用 Python 对最小二乘线性回归进行了完整实现。那么,我们如何利用机器学习开源模块 scikit-learn 实现最小二乘线性回归方法呢?
使用 scikit-learn 实现线性回归的过程会简单很多,这里要用到 LinearRegression()
类 。看一下其中的参数:
使用 scikit-learn 实现线性回归的过程会简单很多,这里要用到 LinearRegression()
类 。看一下其中的参数:
sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)
- fit_intercept: 默认为 True,计算截距项。 - normalize: 默认为 False,不针对数据进行标准化处理。 - copy_X: 默认为 True,即使用数据的副本进行操作,防止影响原数据。 - n_jobs: 计算时的作业数量。默认为 1,若为 -1 则使用全部 CPU 参与运算。
from sklearn.linear_model import LinearRegression# 定义线性回归模型
model = LinearRegression()
model.fit(x.reshape(len(x), 1), y) # 训练,reshape 操作把数据处理成 fit 能接受的形状# 得到模型拟合参数
model.intercept_, model.coef_
这里,通过 model.intercept_
可以得到拟合的截距项,即上面的 w0w0,通过 model.coef_
得到 xx 的系数,即上面的 w1w1。对比发现,结果是完全一致的。
同样,我们可以预测 150 平米房产的价格:
model.predict([[150]])
可以看到,这里得出的结果和自行实现计算结果一致。
PS:这里虽然只有一维的数据,但是还是要处理成二维的,因为线性规划就是要二维的数据,如果一维就得升维,如果三维就得降维,下面是个例子:
在 scikit-learn
的线性回归实现中,数据格式要求:
- 每一行表示一个 样本。
- 每一列表示一个 特征。
二维数组的形式:
- 形状为
(n_samples, n_features)
:n_samples
是样本数(行数)。n_features
是特征数(列数)。
对于一维数据:
- 每个样本只有一个特征,例如 x=[1,2,3,4,5]x = [1, 2, 3, 4, 5]x=[1,2,3,4,5]。
- 转换为二维时,形状变为
(5, 1)
,表示有 5 个样本,每个样本只有 1 个特征。
转换后矩阵:
最小二乘法的矩阵推导及实现
学习完上面的内容,相信你已经了解了什么是最小二乘法,以及如何使用最小二乘法进行线性回归拟合。上面,实验采用了求偏导数的方法,并通过代数求解找到了最佳拟合参数 w 的值。这里,我们尝试另外一种方法,即通过矩阵的变换来计算参数 w。
首先,一元线性函数的表达式为 y(x,w)=w0+w1x,表达成矩阵形式为:
PS:
(8) 式中,W 为 [w0 w1],而 X 则是 [1,x1 1,x2 ⋯ 1,x9 1,x10][1,x1 1,x2 ⋯ 1,x9 1,x10] 矩阵。然后,平方损失函数为:
通过对公式 (9) 实施矩阵计算乘法分配律得到:
在该公式中 y 与 XW 皆为相同形式的 (m,1) 矩阵,由此两者相乘属于线性关系,所以等价转换如下:
此时,对 矩阵求偏导数 得到:
我们可以针对公式 (13) 进行代码实现:
def w_matrix(x, y):w = (x.T * x).I * x.T * yreturn w
这里计算时,需要对原 x 数据添加截距项系数 1。
x = np.matrix([[1, 56], [1, 72], [1, 69], [1, 88], [1, 102],[1, 86], [1, 76], [1, 79], [1, 94], [1, 74]])
y = np.matrix([92, 102, 86, 110, 130, 99, 96, 102, 105, 92])w_matrix(x, y.reshape(10, 1))
可以看到,矩阵计算结果和前面的代数计算结果一致。你可能会有疑问,那就是为什么要采用矩阵变换的方式计算?一开始学习的代数计算方法不好吗?
其实,并不是说代数计算方式不好,在小数据集下二者运算效率接近。但是,当我们面对十万或百万规模的数据时,矩阵计算的效率就会高很多,这就是为什么要学习矩阵计算的原因。
目前,你已经学习了如何使用最小二乘法进行线性回归拟合,以及通过代数计算和矩阵变换两种方式计算拟合系数 w,这已经达到了掌握线性回归方法的要求。接下来,我们将尝试加载一个真实数据集,并使用 scikit-learn 构建预测模型,实现回归预测。
既然前面的 2 个小节中,都使用了和房价相关的示例数据。这里,我们就采用一个真实的房价数据集,也就是「波士顿房价数据集」。
数据集介绍及划分
波士顿房价数据集 是机器学习中非常知名的数据集,它被用于多篇回归算法研究的学术论文中。该数据集共计 506 条,其中包含有 13 个与房价相关的特征以及 1 个目标值(房价)。
import pandas as pddf = pd.read_csv("https://labfile.oss.aliyuncs.com/courses/1081/course-5-boston.csv")
查看 DataFrame 前 5 行数据。
df.head()
该数据集统计了波士顿地区各城镇的住房价格中位数,以及与之相关的特征。每列数据的列名解释如下:
CRIM
: 城镇犯罪率。ZN
: 占地面积超过 2.5 万平方英尺的住宅用地比例。INDUS
: 城镇非零售业务地区的比例。CHAS
: 查尔斯河是否经过 (=1
经过,=0
不经过)。NOX
: 一氧化氮浓度(每1000
万份)。RM
: 住宅平均房间数。AGE
: 所有者年龄。DIS
: 与就业中心的距离。RAD
: 公路可达性指数。TAX
: 物业税率。PTRATIO
: 城镇师生比例。BLACK
: 城镇的黑人指数。LSTAT
: 人口中地位较低人群的百分数。MEDV
: 城镇住房价格中位数。
本次实验中,我们不会使用到全部的数据特征。这里,仅选取 CRIM
, RM
, LSTAT
三个特征用于线性回归模型训练。我们将这三个特征的数据单独拿出来,并且使用 describe()
方法查看其描述信息。 describe()
统计了每列数据的个数、最大值、最小值、平均数等信息。
同样,我们将目标值单独拿出来。训练一个机器学习预测模型时,我们通常会将数据集划分为 70% 和 30% 两部分。
其中,70% 的部分被称之为训练集,用于模型训练。例如,这里的线性回归,就是从训练集中找到最佳拟合参数 w 的值。另外的 30% 被称为测试集。对于测试集而言,首先我们知道它对应的真实目标值,然后可以给学习完成的模型输入测试集中的特征,得到预测目标值。最后,通过对比预测的目标值与真实目标值之间的差异,评估模型的预测性能。
上图就是一个简单的机器学习模型训练流程。接下来,我们针对数据集的特征和目标进行分割,分别得到 70% 的训练集和 30% 的测试集。其中,训练集特征、训练集目标、测试集特征和测试集目标分别定义为:X_train
, y_train
, X_test
, y_test
。
target = df['medv'] # 目标值数据split_num = int(len(features)*0.7) # 得到 70% 位置X_train = features[:split_num] # 训练集特征
y_train = target[:split_num] # 训练集目标X_test = features[split_num:] # 测试集特征
y_test = target[split_num:] # 测试集目标
构建和训练模型
划分完数据集之后,就可以构建并训练模型。同样,这里要用到 LinearRegression()
类。对于该类的参数就不再重复介绍了。
model = LinearRegression() # 建立模型
model.fit(X_train, y_train) # 训练模型
model.coef_, model.intercept_ # 输出训练后的模型参数和截距项
上面的单元格中,我们输出了线性回归模型的拟合参数。也就是最终的拟合线性函数近似为:
medv=0.6998⋅crim+10.1356⋅rm−0.2053⋅lstat−38.0010
其中,x1, x2, x3 分别对应数据集中 CRIM
, RM
和 LSTAT
列。接下来,向训练好的模型中输入测试集的特征得到预测值。
preds = model.predict(X_test) # 输入测试集特征进行预测
preds # 预测结果
对于回归预测结果,通常会有平均绝对误差、平均绝对百分比误差、均方误差等多个指标进行评价。这里,我们先介绍两个:
平均绝对误差(MAE)就是绝对误差的平均值,它的计算公式如下:
其中,yi 表示真实值,y^i 表示预测值,n 则表示值的个数。MAE 的值越小,说明模型拥有更好的拟合程度。我们可以尝试使用 Python 实现 MAE 计算函数:
def mae_value(y_true, y_pred):n = len(y_true)mae = sum(np.abs(y_true - y_pred))/nreturn mae
均方误差(MSE)它表示误差的平方的期望值,它的计算公式如下:
其中,yi 表示真实值,y^i 表示预测值,n 则表示值的个数。MSE 的值越小,说明预测模型拥有更好的精确度。同样,我们可以尝试使用 Python 实现 MSE 计算函数:
def mse_value(y_true, y_pred):n = len(y_true)mse = sum(np.square(y_true - y_pred))/nreturn mse
于是,我们可以计算出上面模型的平均指标,即预测结果的 MSE 和 MAE 值:
mae = mae_value(y_test.values, preds)
mse = mse_value(y_test.values, preds)print("MAE: ", mae)
print("MSE: ", mse)
这主要是因为我们没有针对数据进行预处理。上面的实验中,我们随机选择了 3 个特征,并没有合理利用数据集提供的其他特征。除此之外,也没有针对异常数据进行剔除以及规范化处理。
当然,掌握好线性回归的原理和实现方法,才是本次实验内容的重点。
总结
在本文中,我们从线性回归原理入手,学习了最小二乘法的两种求解方法,并针对线性回归算法进行了完整实现。在这个过程中,你了解到了机器学习的训练和预测流程,以及背后的数学思想。
总结而来,一个机器学习过程往往包含训练和预测两部分,训练好的模型可用于对未知数据的预测。而训练模型的过程,实际上是应用机器学习算法解决问题的过程。其中,我们通常会定义一个损失函数(平方损失函数),并使用一种数学优化方法(最小二乘法)去求解该损失函数的最优解。这个思想将始终贯穿于机器学习之中。