Mysql索引类型总结

按照数据结构维度划分:

  • BTree 索引:MySQL 里默认和最常用的索引类型。只有叶子节点存储 value,非叶子节点只有指针和 key。存储引擎 MyISAM 和 InnoDB 实现 BTree 索引都是使用 B+Tree,但二者实现方式不一样(前面已经介绍了)。
  • 哈希索引:类似键值对的形式,一次即可定位。
  • RTree 索引:一般不会使用,仅支持 geometry 数据类型,优势在于范围查找,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHARVARCHARTEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

按照底层存储方式角度划分:

  • 聚簇索引(聚集索引):索引结构和数据一起存放的索引,InnoDB 中的主键索引就属于聚簇索引。
  • 非聚簇索引(非聚集索引):索引结构和数据分开存放的索引,二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。

按照应用维度划分:

  • 主键索引:加速查询 + 列值唯一(不可以有 NULL)+ 表中只有一个。
  • 普通索引:仅加速查询。
  • 唯一索引:加速查询 + 列值唯一(可以有 NULL)。
  • 覆盖索引:一个索引包含(或者说覆盖)所有需要查询的字段的值。
  • 联合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHARVARCHARTEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

MySQL 8.x 中实现的索引新特性:

  • 隐藏索引:也称为不可见索引,不会被优化器使用,但是仍然需要维护,通常会软删除和灰度发布的场景中使用。主键不能设置为隐藏(包括显式设置或隐式设置)。
  • 降序索引:之前的版本就支持通过 desc 来指定索引为降序,但实际上创建的仍然是常规的升序索引。直到 MySQL 8.x 版本才开始真正支持降序索引。另外,在 MySQL 8.x 版本中,不再对 GROUP BY 语句进行隐式排序。
  • 函数索引:从 MySQL 8.0.13 版本开始支持在索引中使用函数或者表达式的值,也就是在索引中可以包含函数或者表达式。

主键索引(Primary Key)

数据表的主键列使用的就是主键索引。

一张数据表有只能有一个主键,并且主键不能为 null,不能重复。

在 MySQL 的 InnoDB 的表中,当没有显示的指定表的主键时,InnoDB 会自动先检查表中是否有唯一索引且不允许存在 null 值的字段,如果有,则选择该字段为默认的主键,否则 InnoDB 将会自动创建一个 6Byte 的自增主键。

主键索引

                                                                   主键索引

二级索引
 

二级索引(Secondary Index)的叶子节点存储的数据是主键的值,也就是说,通过二级索引可以定位主键的位置,二级索引又称为辅助索引/非主键索引。

唯一索引,普通索引,前缀索引等索引都属于二级索引。

PS: 不懂的同学可以暂存疑,慢慢往下看,后面会有答案的,也可以自行搜索。

  1. 唯一索引(Unique Key):唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
  2. 普通索引(Index):普通索引的唯一作用就是为了快速查询数据,一张表允许创建多个普通索引,并允许数据重复和 NULL。
  3. 前缀索引(Prefix):前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小,因为只取前几个字符。
  4. 全文索引(Full Text):全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MYISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。

二级索引:

二级索引

                                                                 二级索引

聚簇索引与非聚簇索引

聚簇索引(聚集索引)

聚簇索引介绍

聚簇索引(Clustered Index)即索引结构和数据一起存放的索引,并不是一种单独的索引类型。InnoDB 中的主键索引就属于聚簇索引。

在 MySQL 中,InnoDB 引擎的表的 .ibd文件就包含了该表的索引和数据,对于 InnoDB 引擎表来说,该表的索引(B+树)的每个非叶子节点存储索引,叶子节点存储索引和索引对应的数据。

聚簇索引的优缺点

优点

  • 查询速度非常快:聚簇索引的查询速度非常的快,因为整个 B+树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。相比于非聚簇索引, 聚簇索引少了一次读取数据的 IO 操作。
  • 对排序查找和范围查找优化:聚簇索引对于主键的排序查找和范围查找速度非常快。

缺点

  • 依赖于有序的数据:因为 B+树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
  • 更新代价大:如果对索引列的数据被修改时,那么对应的索引也将会被修改,而且聚簇索引的叶子节点还存放着数据,修改代价肯定是较大的,所以对于主键索引来说,主键一般都是不可被修改的。

非聚簇索引(非聚集索引)

非聚簇索引介绍

非聚簇索引(Non-Clustered Index)即索引结构和数据分开存放的索引,并不是一种单独的索引类型。二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。

非聚簇索引的叶子节点并不一定存放数据的指针,因为二级索引的叶子节点就存放的是主键,根据主键再回表查数据。

非聚簇索引的优缺点

优点

更新代价比聚簇索引要小 。非聚簇索引的更新代价就没有聚簇索引那么大了,非聚簇索引的叶子节点是不存放数据的。

缺点

  • 依赖于有序的数据:跟聚簇索引一样,非聚簇索引也依赖于有序的数据
  • 可能会二次查询(回表):这应该是非聚簇索引最大的缺点了。 当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。

这是 MySQL 的表的文件截图:

MySQL 表的文件

                                                     MySQL 表的文件

聚簇索引和非聚簇索引:

聚簇索引和非聚簇索引

                                                    聚簇索引和非聚簇索引

非聚簇索引一定回表查询吗(覆盖索引)?

非聚簇索引不一定回表查询。

试想一种情况,用户准备使用 SQL 查询用户名,而用户名字段正好建立了索引。

 SELECT name FROM table WHERE name='guang19';

那么这个索引的 key 本身就是 name,查到对应的 name 直接返回就行了,无需回表查询。

即使是 MYISAM 也是这样,虽然 MYISAM 的主键索引确实需要回表,因为它的主键索引的叶子节点存放的是指针。但是!如果 SQL 查的就是主键呢?

SELECT id FROM table WHERE id=1;

主键索引本身的 key 就是主键,查到返回就行了。这种情况就称之为覆盖索引了。

覆盖索引和联合索引

覆盖索引

如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为 覆盖索引(Covering Index)

在 InnoDB 存储引擎中,非主键索引的叶子节点包含的是主键的值。这意味着,当使用非主键索引进行查询时,数据库会先找到对应的主键值,然后再通过主键索引来定位和检索完整的行数据。这个过程被称为“回表”。

覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了,而无需回表查询。

如主键索引,如果一条 SQL 需要查询主键,那么正好根据主键索引就可以查到主键。再如普通索引,如果一条 SQL 需要查询 name,name 字段正好有索引,

那么直接根据这个索引就可以查到数据,也无需回表。

覆盖索引

                                                                  覆盖索引

我们这里简单演示一下覆盖索引的效果。

1、创建一个名为 cus_order 的表,来实际测试一下这种排序方式。为了测试方便, cus_order 这张表只有 idscorename这 3 个字段。

CREATE TABLE `cus_order` (`id` int(11) unsigned NOT NULL AUTO_INCREMENT,`score` int(11) NOT NULL,`name` varchar(11) NOT NULL DEFAULT '',PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=100000 DEFAULT CHARSET=utf8mb4;

2、定义一个简单的存储过程(PROCEDURE)来插入 100w 测试数据。

DELIMITER ;;
CREATE DEFINER=`root`@`%` PROCEDURE `BatchinsertDataToCusOder`(IN start_num INT,IN max_num INT)
BEGINDECLARE i INT default start_num;WHILE i < max_num DOinsert into `cus_order`(`id`, `score`, `name`)values (i,RAND() * 1000000,CONCAT('user', i));SET i = i + 1;END WHILE;END;;
DELIMITER ;

存储过程定义完成之后,我们执行存储过程即可!

CALL BatchinsertDataToCusOder(1, 1000000); # 插入100w+的随机数据

等待一会,100w 的测试数据就插入完成了!

3、创建覆盖索引并使用 EXPLAIN 命令分析。

为了能够对这 100w 数据按照 score 进行排序,我们需要执行下面的 SQL 语句。

#降序排序
SELECT `score`,`name` FROM `cus_order` ORDER BY `score` DESC;

使用 EXPLAIN 命令分析这条 SQL 语句,通过 Extra 这一列的 Using filesort ,我们发现是没有用到覆盖索引的。

 

不过这也是理所应当,毕竟我们现在还没有创建索引呢!

我们这里以 scorename 两个字段建立联合索引:

ALTER TABLE `cus_order` ADD INDEX id_score_name(score, name);

创建完成之后,再用 EXPLAIN 命令分析再次分析这条 SQL 语句。

 

通过 Extra 这一列的 Using index ,说明这条 SQL 语句成功使用了覆盖索引。

关于 EXPLAIN 命令的详细介绍请看:MySQL 执行计划分析这篇文章。

联合索引

使用表中的多个字段创建索引,就是 联合索引,也叫 组合索引复合索引

scorename 两个字段建立联合索引:

ALTER TABLE `cus_order` ADD INDEX id_score_name(score, name);

最左前缀匹配原则

最左前缀匹配原则指的是在使用联合索引时,MySQL 会根据索引中的字段顺序,从左到右依次匹配查询条件中的字段。如果查询条件与索引中的最左侧字段相匹配,那么 MySQL 就会使用索引来过滤数据,这样可以提高查询效率。

最左匹配原则会一直向右匹配,直到遇到范围查询(如 >、<)为止。对于 >=、<=、BETWEEN 以及前缀匹配 LIKE 的范围查询,不会停止匹配(相关阅读:联合索引的最左匹配原则全网都在说的一个错误结论)。

假设有一个联合索引(column1, column2, column3),其从左到右的所有前缀为(column1)(column1, column2)(column1, column2, column3)(创建 1 个联合索引相当于创建了 3 个索引),包含这些列的所有查询都会走索引而不会全表扫描。

我们在使用联合索引时,可以将区分度高的字段放在最左边,这也可以过滤更多数据。

我们这里简单演示一下最左前缀匹配的效果。

1、创建一个名为 student 的表,这张表只有 idnameclass这 3 个字段。

CREATE TABLE `student` (`id` int NOT NULL,`name` varchar(100) DEFAULT NULL,`class` varchar(100) DEFAULT NULL,PRIMARY KEY (`id`),KEY `name_class_idx` (`name`,`class`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

2、下面我们分别测试三条不同的 SQL 语句。

 

# 可以命中索引
SELECT * FROM student WHERE name = 'Anne Henry';
EXPLAIN SELECT * FROM student WHERE name = 'Anne Henry' AND class = 'lIrm08RYVk';
# 无法命中索引
SELECT * FROM student WHERE class = 'lIrm08RYVk';

再来看一个常见的面试题:如果有索引 联合索引(a,b,c),查询 a=1 AND c=1会走索引么?c=1 呢?b=1 AND c=1呢?

先不要往下看答案,给自己 3 分钟时间想一想。

  1. 查询 a=1 AND c=1:根据最左前缀匹配原则,查询可以使用索引的前缀部分。因此,该查询仅在 a=1 上使用索引,然后对结果进行 c=1 的过滤。
  2. 查询 c=1 :由于查询中不包含最左列 a,根据最左前缀匹配原则,整个索引都无法被使用。
  3. 查询b=1 AND c=1:和第二种一样的情况,整个索引都不会使用。

MySQL 8.0.13 版本引入了索引跳跃扫描(Index Skip Scan,简称 ISS),它可以在某些索引查询场景下提高查询效率。在没有 ISS 之前,不满足最左前缀匹配原则的联合索引查询中会执行全表扫描。而 ISS 允许 MySQL 在某些情况下避免全表扫描,即使查询条件不符合最左前缀。不过,这个功能比较鸡肋, 和 Oracle 中的没法比,MySQL 8.0.31 还报告了一个 bug:Bug #109145 Using index for skip scan cause incorrect result(后续版本已经修复)。个人建议知道有这个东西就好,不需要深究,实际项目也不一定能用上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/64621.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中间件 redis安装

redis官网地址&#xff1a;Redis - The Real-time Data Platform 环境 CentOS Linux release 7.9.2009 (Core) java version "17.0.12" 2024-07-16 LTS 1、通过压缩包安装redis 1&#xff0c;远程下载redis压缩包&#xff0c;或去官网下载&#xff1a;Downloads …

台球助教平台系统开发APP和小程序信息收藏功能需求解析(第十二章)

以下是开发台球助教系统客户端&#xff08;APP&#xff0c;小程序&#xff0c;H5&#xff09;几端的信息收藏功能的详细需求和功能说明&#xff0c;内容比较详细&#xff0c;可以说是一个教科书式的详细说明了&#xff0c;这套需求说明不仅仅用在我们的台球助教系统程序上&…

freertos入门---堆的概念

freertos入门—堆的概念 堆就是一块空闲的内存。下面举个例子更好的理解堆的概念&#xff1a;   堆是一块空闲的内存&#xff0c;我们可以定义一个数组char heap_buf[1024]&#xff0c;可以看到该数组就是一个空闲的内存&#xff0c;我们只需要在它上面实现内存的分配和释放那…

操作系统(17)文件和文件系统

一、文件 定义&#xff1a;文件是数据的有序集合&#xff0c;是用户存储信息于辅存的基本逻辑单位。文件可以是字符流构成的无结构文件&#xff0c;也可以是包含相似记录的结构化文件。 类型&#xff1a; 按性质和用途&#xff1a;系统文件&#xff08;由系统软件构成的文件&a…

ASP.NET|日常开发中读写TXT文本详解

ASP.NET&#xff5c;日常开发中读写TXT文本详解 前言一、读取 TXT 文本1.1 使用StreamReader类 二、写入 TXT 文本2.1 使用StreamWriter类 三、文件编码问题3.1 常见编码格式 四、错误处理和性能考虑4.1 错误处理4.2 性能考虑 结束语优质源码分享 ASP.NET&#xff5c;日常开发中…

notepad++快捷键-多行编辑中如何使所有行的光标都向后移动一个单词的长度(每行单词长度不一定一致)

问题&#xff1a;在使用notepad进行多行编辑&#xff08;多行光标移动一个单词长度&#xff09;时&#xff08;将下图由左边变为右边&#xff09;&#xff0c;在使用Ctrl左键拖拽选中多行后&#xff0c;想要将每行的光标向后移动一个单词的长度&#xff08;每行的单词长度不一样…

【IC】Hybrid Bonding技术

从纳米到埃米&#xff0c;芯片制造商正在竭尽全力缩小电路的尺寸。但面对算力需求的激增&#xff0c;一项涉及更大尺寸&#xff08;数百或数千纳米&#xff09;的技术——混合键合&#xff08;Hybrid Bonding&#xff09;——将在未来五年内扮演重要角色。近日&#xff0c;IEEE…

洛谷 B3643 图的存储 C语言

题目&#xff1a;https://www.luogu.com.cn/problem/B3643 题目描述 给定一个 n 个顶点 m 条边的无向图。请以邻接矩阵和邻接表的形式输出这一张图。 输入格式 第一行输入两个正整数 n 和 m&#xff0c;表示图的顶点数和边数。 第二行开始&#xff0c;往后 m 行&#xff0…

MATLAB里面,try-catch-end系列语言的含义与用法(含例程)

在 MATLAB 中&#xff0c;try-catch-end 语句用于处理可能会引发错误的代码。它允许你在“尝试”部分执行代码&#xff0c;如果代码执行过程中发生错误&#xff0c;将转到“捕获”部分执行相应的处理。这种错误处理机制可以提高程序的健壮性&#xff0c;避免因小错误导致整个程…

Python练习之列表的使用

&#xff08;搭配主页知识点&#xff09; 【练习要求】 针对知识点列表定义、追加、列表元素读取、查找安排的本实例。要求实现&#xff1a;有一个列表&#xff0c;内容是:[21,25,21,23,22,20]&#xff0c;记录的是一批学生的年龄请通过列表的功能(方法)&#xff0c;对其进行…

安装虚拟机(VMware)教程+win7

VMware 一.下载VMware Wworkstation Pro二、安装VMware三、安装虚拟机 一.下载VMware Wworkstation Pro 1.去vmware官网下载 官网 2.网盘下载 通过网盘分享的文件&#xff1a;vmware 链接: https://pan.baidu.com/s/1bOff79NFAmDlISQo6LK6PQ?pwdhunr 提取码: hunr --来自百…

C语言总共n位数,将后面的K个数与前面的数对调位置,前后二部分的数字顺序不变

例如&#xff1a;n5&#xff0c;k2&#xff0c;要处理的数字是12345&#xff0c;则处理后变成45123 这个问题可以通过以下步骤解决&#xff1a; 确定前后两部分的分界点。 对前后两部分分别进行反转。 以下是一个简单的C语言示例代码&#xff1a; #include<stdio.h>…

C# Winform双色纸牌接龙小游戏源码

文章目录 一、设计来源双色纸牌接龙小游戏讲解1.1 主界面1.2 游戏界面1.3 游戏界面快成功了 二、效果和源码2.1 动态效果2.2 源代码 源码下载更多优质源码分享 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/details/144419994 …

无人机航测系统技术特点!

一、无人机航测系统的设计逻辑 无人机航测系统的设计逻辑主要围绕实现高效、准确、安全的航空摄影测量展开。其设计目标是通过无人机搭载相机和传感器&#xff0c;利用先进的飞行控制系统和数据处理技术&#xff0c;实现对地表信息的全方位、高精度获取。 需求分析&#xff1…

分割双声道音频-Audacity和ffmpeg

双声道音频资源&#xff1a; https://download.csdn.net/download/yudelian/90135217 1、ffmpeg分割双声道音频 ffmpeg -i input.wav -map_channel 0.0.0 left.wav -map_channel 0.0.1 right.wav 2、audacity分割双生音频并且播放 选择分离立体声轨 可以看出分离出了两个音频…

以太网帧、IP数据报图解

注&#xff1a;本文为 “以太网帧、IP数据报”图解相关文章合辑。 未整理去重。 以太网帧、IP数据报的图解格式&#xff08;包含相关例题讲解&#xff09; Rebecca.Yan已于 2023-05-27 14:13:19 修改 一、基础知识 UDP 段、IP 数据包&#xff0c;以太网帧图示 通信过程中&…

docker简单命令

docker images 查看镜像文件 docker ps -a 查看容器文件 docker rm 0b2 删除容器文件&#xff0c;id取前三位即可 docker rmi e64 删除镜像文件&#xff08;先删容器才能删镜像&#xff09;&#xff0c;id取前三位即可 在包含Dockerfile文件的目录…

自然语言处理:我的学习心得与笔记

Pytorch 1.Pytorch基本语法 1.1 认识Pytorch 1.2 Pytorch中的autograd 2.Pytorch初步应用 2.1 使用Pytorch构建一个神经网络 2.2 使用Pytorch构建一个分类器 小节总结 学习了什么是Pytorch. 。Pytorch是一个基于Numpy的科学计算包,作为Numpy的替代者,向用户提供使用GPU强大…

‌HBase是什么,‌HBase介绍

‌官方网站&#xff1a;Apache HBase – Apache HBase Home HBase是一个分布式的、面向列的NoSQL数据库&#xff0c;主要用于存储和处理海量数据。‌它起源于Google的​​​​​​​BigTable论文&#xff0c;是Apache Hadoop项目的子项目。HBase设计用于高可靠性、高性能和可伸…

Pytorch | 从零构建AlexNet对CIFAR10进行分类

Pytorch | 从零构建AlexNet对CIFAR10进行分类 CIFAR10数据集AlexNet网络结构技术创新点性能表现影响和意义 AlexNet结构代码详解结构代码代码详解特征提取层 self.features分类部分self.classifier前向传播forward 训练过程和测试结果代码汇总alexnet.pytrain.pytest.py CIFAR1…