三、基于langchain使用Qwen搭建金融RAG问答机器人--检索增强生成

经过前面2节数据准备后,现在来构建检索

加载向量数据库

from langchain.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
import os# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="m3e-base")# 向量数据库持久化路径
persist_directory = 'data_base/chroma'# 加载数据库
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings
)

定义提示词模板

要求模型使用上下文来回答问题,这个上下文就是context,也就是从向量数据检索到相关的文本片段后,回答最后的问题question

from langchain.prompts import PromptTemplate# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。”。
{context}
问题: {question}
有用的回答:"""# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

定义大模型LLM

需要先到阿里通义千问申请账户,具体操作指引在 这里

import os
os.environ["DASHSCOPE_API_KEY"] = 'sk-******'
from langchain_community.llms import Tongyi
llm = Tongyi()

定义检索问答链

from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

对比大模型和检索生成的结果

大模型:

question = "上海华铭智能终端设备股份有限公司的股东有哪些人?"
# 仅 LLM 回答效果
result = llm(question)
print("大模型回答 question 的结果:")
print(result)

在这里插入图片描述
检索:

result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])

在这里插入图片描述
检索详情:

print(result)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/64417.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据仓库工具箱—读书笔记02(Kimball维度建模技术概述02、事实表技术基础)

Kimball维度建模技术概述 记录一下读《数据仓库工具箱》时的思考,摘录一些书中关于维度建模比较重要的思想与大家分享🤣🤣🤣 第二章前言部分作者提到:技术的介绍应该通过涵盖各种行业的熟悉的用例展开(赞同…

fabric.js

目录 一、在canvas上画简单的图形 二、在canvas上用路径(Path)画不规则图形 三、在canvas上插入图片并设置旋转属性(angle) 四、让元素动起来(animate) 五、图像过滤器(filters)让图片多姿多彩 六、颜色模式(Color)和相互转换(toRgb、toHex) 七、对图形的渐变填充(Gradi…

Liinux下VMware Workstation Pro的安装,建议安装最新版本17.61

建议安装最新版本17.61,否则可能有兼容性问题 下载VMware Workstation安装软件 从官网网站下载 https://support.broadcom.com/group/ecx/productdownloads?subfamilyVMwareWorkstationPro 选择所需版本 现在最新版本是17.61,否则可能有兼容性问题…

压力测试Jmeter简介

前提条件:要安装JDK 若不需要了解,请直接定位到左侧目录的安装环节。 1.引言 在现代软件开发中,性能和稳定性是衡量系统质量的重要指标。为了确保应用程序在高负载情况下仍能正常运行,压力测试变得尤为重要。Apache JMeter 是一…

前端的知识(部分)

11 前端的编写步骤 第一步:在HTML的页面中声明方法 第二步:在<script>中定义一个函数,其中声明一个data来为需要的数据 赋值一个初始值 第三步:编写这个方法实现对应的功能

LSTM详解

1. LSTM设计 LSTM(长短期记忆网络)详解 长短期记忆网络(LSTM, Long Short-Term Memory) 是一种特殊的循环神经网络(RNN),特别适合处理和预测序列数据中的长时间依赖关系。LSTM 通过引入“门机制”(如输入门、遗忘门、输出门)来解决标准 RNN 在长时间序列任务中梯度消…

我在广州学 Mysql 系列之 数据类型和运算符详解

ℹ️大家好&#xff0c;我是&#x1f606;练小杰&#xff0c;今天主要学习 Mysql的数据类型以及运算符操作~~ 上周五学习了“Mysql 系列之 数据“表”的基本操作”~ 想要了解更多&#x1f236;️MYSQL 数据库的命令行总结&#xff01;&#xff01;&#xff01; “我是你的敌人,…

python 配置 oracle instant client

1.问题描述 想用python连接oracle数据库&#xff0c;百度得知需要cx_Oracle这个第三方库 import cx_Oracle# 设置Oracle数据源名称 dsn cx_Oracle.makedsn(host, port, service_nameservice_name)# 创建数据库连接 connection cx_Oracle.connect(userusername, passwordpas…

使用FastGPT制做一个AI网站日志分析器

越来越的多网站面临每天上千次的扫描和各类攻击&#xff0c;及时发现攻击IP&#xff0c;并有效的屏蔽不良访问成为网站安全的重要保障&#xff0c;这里我们使用AI来完成对网站日志的日常分析。 我们来使用FastGPT来制做一个AI网站日志析器&#xff0c;下面就开始&#xff1a; …

RabbitMQ中的Work Queues模式

在现代分布式系统中&#xff0c;消息队列&#xff08;Message Queue&#xff09;是实现异步通信和解耦系统的关键组件之一。RabbitMQ 是一个广泛使用的开源消息代理软件&#xff0c;支持多种消息传递模式。其中&#xff0c;Work Queues&#xff08;工作队列&#xff09;模式是一…

【Python爬虫系列】_032.Scrapy_全站爬取

课 程 推 荐我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)教程合集 👈👈

音频声音太小怎么调大?调大音频声音的几种方法

音频声音太小怎么调大&#xff1f;音频声音过小可能由多种原因引起。从设备本身的硬件设置&#xff0c;到应用程序或播放软件的音量控制&#xff0c;再到文件本身的音频质量&#xff0c;都可能是导致声音过小的因素。尤其是在观看视频或听音乐时&#xff0c;若音量过低&#xf…

条件随机场(CRF)详解:原理、算法与实现(深入浅出)

目录 1. 引言2. 什么是条件随机场&#xff1f;2.1 直观理解2.2 形式化定义 3. CRF的核心要素3.1 特征函数3.2 参数学习 4. 实战案例&#xff1a;命名实体识别5. CRF vs HMM6. CRF的优化与改进6.1 特征选择6.2 正则化 7. 总结与展望参考资料 1. 引言 条件随机场(Conditional Ra…

基于Clinical BERT的医疗知识图谱自动化构建方法,双层对比框架

基于Clinical BERT的医疗知识图谱自动化构建方法&#xff0c;双层对比框架 论文大纲理解1. 确认目标2. 目标-手段分析3. 实现步骤4. 金手指分析 全流程核心模式核心模式提取压缩后的系统描述核心创新点 数据分析第一步&#xff1a;数据收集第二步&#xff1a;规律挖掘第三步&am…

LWIP协议:三次握手和四次挥手、TCP/IP模型

一、三次握手&#xff1a;是客户端与服务器建立连接的方式&#xff1b; 1、客户端发送建立TCP连接的请求。seq序列号是由发送端随机生成的&#xff0c;SYN字段置为1表示需要建立TCP连接。&#xff08;SYN1&#xff0c;seqx&#xff0c;x为随机生成数值&#xff09;&#xff1b;…

使用winscp从windows访问Ubuntu进行文件传输

Ubuntu 系统上的准备工作 • 安装 SSH 服务器&#xff1a; 确保 Ubuntu 系统上已经安装了 SSH 服务器。如果没有安装&#xff0c;可以使用以下命令安装&#xff1a; sudo apt update sudo apt install openssh-server • 启动 SSH 服务&#xff1a; 确保 SSH 服务正在运行&a…

[机器学习]AdaBoost(数学原理 + 例子解释 + 代码实战)

AdaBoost AdaBoost&#xff08;Adaptive Boosting&#xff09;是一种Boosting算法&#xff0c;它通过迭代地训练弱分类器并将它们组合成一个强分类器来提高分类性能。 AdaBoost算法的特点是它能够自适应地调整样本的权重&#xff0c;使那些被错误分类的样本在后续的训练中得到…

PHP代码审计学习(一)--命令注入

1、漏洞原理 参数用户可控&#xff0c;程序将用户可控的恶意参数通过php可执行命令的函数中运行导致。 2、示例代码 <?php echorec-test; $command ping -c 1 .$_GET[ip]; system($command); //system函数特性 执行结果会自动打印 ?> 通过示例代码可知通过system函…

【并发容器】源码级ConcurrentHashMap详解(java78)

1. ConcurrentHashMap 为什么要使用ConcurrentHashmap 在多线程的情况下&#xff0c;使用HashMap是线程不安全的。另外可以使用Hashtable&#xff0c;其是线程安全的&#xff0c;但是Hashtable的运行效率很低&#xff0c;之所以效率低下主要是因为其实现使用了synchronized关…

Redis的基本使用命令(GET,SET,KEYS,EXISTS,DEL,EXPIRE,TTL,TYPE)

目录 SET GET KEYS EXISTS DEL EXPIRE TTL redis中的过期策略是怎么实现的&#xff08;面试&#xff09; 上文介绍reids的安装以及基本概念&#xff0c;本章节主要介绍 Redis的基本使用命令的使用 Redis 是一个基于键值对&#xff08;KEY - VALUE&#xff09;存储的…