3D 生成重建035-DiffRF直接生成nerf

3D 生成重建035-DiffRF直接生成nerf


文章目录

    • 0 论文工作
    • 1 论文方法
    • 2 实验结果

0 论文工作

本文提出了一种基于渲染引导的三维辐射场扩散新方法DiffRF,用于高质量的三维辐射场合成。现有的方法通常难以生成具有细致纹理和几何细节的三维模型,并且容易出现噪声和伪影。DiffRF通过将扩散过程与体渲染相结合,利用渲染图像作为指导,有效地解决了这些问题。具体来说,DiffRF首先通过一个预训练的扩散模型生成辐射场的初始表示,然后利用渲染图像作为监督信息,通过迭代的扩散过程对辐射场进行细化,最终生成高质量的三维辐射场。 该方法利用体渲染的特性,可以有效地减少噪声,并提高生成模型的稳定性。实验结果表明,DiffRF在多个数据集上均取得了最先进的结果,在视觉质量和定量指标上都显著优于现有方法。
一个小的nerf扩散模型,几张图像生成一个粗糙的nerf,放入到扩散模型中降噪。
paper
相关论文
nerfdiff

1 论文方法

在这里插入图片描述
DiffRF 旨在解决现有三维辐射场生成方法中存在的噪声、伪影以及细节缺失等问题。它利用渲染图像作为扩散过程的指导,通过迭代细化辐射场表示来生成高质量的三维模型。 DiffRF 的核心思想是将扩散模型与体渲染过程相结合,利用体渲染的特性来减少噪声,并提高生成模型的稳定性。 该方法首先使用预训练的扩散模型生成辐射场的初始表示,然后在迭代过程中,通过最小化渲染图像与目标图像之间的差异来逐步细化辐射场。 这种渲染引导的扩散过程能够有效地生成具有丰富细节和高质量纹理的三维模型。
渲染引导的扩散过程: 这是 DiffRF 最主要的创新点。它将渲染图像作为扩散过程的指导信息,利用渲染图像与目标图像之间的差异来驱动扩散过程,从而有效地控制生成过程,减少噪声,并提高生成质量。 以往的方法通常直接从噪声中生成辐射场,容易出现不稳定和伪影。
体渲染的有效利用: DiffRF 充分利用了体渲染的特性,通过体渲染将三维辐射场转换为二维图像,并利用渲染图像与目标图像的差异来指导扩散过程。体渲染过程本身就具有去噪和平滑的作用,有利于生成高质量的图像。
预训练扩散模型的有效利用: DiffRF 利用预训练的扩散模型生成辐射场的初始表示,为后续的扩散过程提供了一个良好的起点,提高了生成效率和稳定性。

2 实验结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/64008.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

求解球面的一组正交标架

目录 求解球面的一组正交标架 求解球面的一组正交标架 球面 r ( u , v ) ( a cos ⁡ u cos ⁡ v , a cos ⁡ u sin ⁡ v , a sin ⁡ u ) \mathbf{r}(u,v)\left(a\cos u\cos v,a\cos u\sin v,a\sin u\right) r(u,v)(acosucosv,acosusinv,asinu), 求得 r u ( − a sin ⁡ u c…

中国计算机学会计算机视觉专委会携手合合信息举办企业交流活动,为AI安全治理打开“新思路”

近期,《咬文嚼字》杂志发布了2024年度十大流行语,“智能向善”位列其中,过去一年时间里,深度伪造、AI诈骗等话题屡次登上热搜,AI技术“野蛮生长”引发公众担忧。今年9月,全国网络安全标准化技术委员会发布了…

【系统思辨】两难与虚假两难

怎么做都不好 前面有两条路,做事情有两种方法,也就是说有两种可能的选择,无论哪一种选择,都有利有弊,让人们处于进退维谷的困境。这类问题的特征就是,无论你的决定是什么,都会失去另一半&#…

详解多租户架构下的资源隔离模式

文章目录 0.简介1.多租户概念1.1 基本概念1.2 单租户 vs 多租户 2.实现方案2.1 独立数据库方案2.1.1 优点2.1.2 缺点2.1.3 应用场景 2.2 共享数据库,独立 Schema2.2.1 优点2.2.2 缺点2.2.3 应用场景 2.3 共享数据库、共享Schema、共享表2.3.1 优点2.3.2 缺点2.3.3 应…

SMMU软件指南SMMU编程之寄存器

安全之安全(security)博客目录导读 本博客介绍了SMMUv3的编程接口: • SMMU寄存器 • 流表(Stream table) • CD(Context Descriptor) • 事件队列(Event queue) • 命令队列(…

分布式 窗口算法 总结

前言 相关系列 《分布式 & 目录》《分布式 & 窗口算法 & 总结》《分布式 & 窗口算法 & 问题》 参考文献 《【算法】令牌桶算法》 固定窗口算法 简介 固定窗口算法是最简单的流量控制算法。固定窗口算法的核心原理是将系统的生命周期划分为一个个…

SEC_ASA 第二天作业

拓扑 按照拓扑图配置 NTP,Server端为 Outside路由器,Client端为 ASA,两个设备的 NTP传输使用MD5做校验。(安全 V4 LAB考点) 提示:Outside路由器作为 Server端要配置好正确的时间和时区,ASA防…

JAVA实战:借助阿里云实现短信发送功能

亲爱的小伙伴们😘,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA 、PYTHON与SAP 的奇妙世界,亦或是读研论文的撰写攻略有所探寻🧐,那不妨给我一个小小的关注吧🥰。我会精心筹备,在…

【电力负荷预测实例】采用新英格兰2024年最新电力负荷数据的XGBoost电力负荷预测模型

与小编上篇文章介绍的基于BPNN神经网络的电力负荷预测相比较,两种模型的负荷预测方法各有优势,神经网络能够自动提取特征并处理非线性关系,而XGBoost则具有预测精度高、运行速率快和可解释性强的特点。在实际应用中,可以根据具体需…

数据库数据恢复—ORACLE常见故障有哪些?如何恢复数据?

Oracle数据库常见故障表现: 1、ORACLE数据库无法启动或无法正常工作。 2、ORACLE ASM存储破坏。 3、ORACLE数据文件丢失。 4、ORACLE数据文件部分损坏。 5、ORACLE DUMP文件损坏。 Oracle数据库数据恢复方案: 1、检测存放数据库的服务器/存储设备是否存…

题目 3000: 交换值

题目 3000: 交换值 时间限制: 2s 内存限制: 192MB 提交: 5409 解决: 3331 题目描述 输入两个正整数a和b,试交换a、b的值(使a的值等于b,b的值等于a)。 输入格式 输入两个正整数a和b。 输出格式 输出a与b交换值后的结果。 样例输入 …

ArcGIS MultiPatch数据转换Obj数据

文章目录 ArcGIS MultiPatch数据转换Obj数据1 效果2 技术路线2.1 Multipatch To Collada2.2 Collada To Obj3 代码实现4 附录4.1 环境4.2 一些坑ArcGIS MultiPatch数据转换Obj数据 1 效果 2 技术路线 MultiPatch --MultipatchToCollada–> Collada --Assimp–> Obj 2.…

简单vue3前端打包部署到服务器,动态配置http请求头后端ip方法教程

vue3若依框架前端打包部署到服务器,需要部署到多个服务器上,每次打包会很麻烦,今天教大家一个动态配置请求头api的方法,部署后能动态获取(修改)对应服务器的请求ip 介绍两种方法,如有需要可以直接尝试步骤一&#xff…

【笔记】记录对python中.grad()的一些理解

这几天再看神经网络,有点不明白.grad()、.detach()、.backward()等等等等这些关于梯度计算的东西,今天好像理解了一点,来做一个自己理解的总结。 首先来看一段非常简单的代码: import torchX torch.tensor([1.0, 2.0, 3.0], re…

vue3-count-to实现数字动态增长效果

vue3-count-to 是一个用于 Vue 3的数字计数动画库,常用于在页面上实现数字的动态增长效果,类似于从某个起始值渐变到目标值的效果。它可以用来显示各种数字、统计数据或展示动画效果。 1 安装 vue3-count-to 首先,你需要安装 vue3-count-to …

android AIDL ipc binder转换

一. 概述 众所周知AIDL并不是所有的数据类型都可以传输。 可以传输的类型包括: 1.原生类型 2.String 3. CharSequence 4. List 5.Map 6. Binder 7. Parcelable 容器类 parcelable传输的时候会分解成成员,数组item的方式,传输完成后再进行…

CityEngine实践——常用cga文件解析系列(2)

上回书说到了: 3、RULES/COMPONENTS/MASSING/SUBURBAN_BLOCK DETACHED_HOUSES.CGA ROWHOUSES.CGA SEMI_DETACHED_HOUSES.CGA 4、RULES/COMPONENTS/MASSING/URBAN_BLOCK MONOBLOCK.CGA PERIMETER_8_SHAPE.CGA PERIMETER_MULTIPART.CGA 这个cga挺有意思&#xff0c…

贪心算法 - 学习笔记 【C++】

2024-12-09 - 第 38 篇 贪心算法 - 学习笔记 作者(Author): 郑龙浩 / 仟濹(CSND账号名) 贪心算法 学习课程: https://www.bilibili.com/video/BV1f84y1i7mv/?spm_id_from333.337.search-card.all.click&vd_source2683707f584c21c57616cc6ce8454e2b 一、基本…

【安全研究】某黑产网站后台滲透与逆向分析

文章目录 x01. 前言x02. 分析 【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python与爬虫领域研究与…

ESP32外设学习部分--SPI篇

SPI学习 前言 我个人以为开始学习一个新的单片机最好的方法就是先把他各个外设给跑一遍,整体了解一下他的功能,由此记录一下我学习ESP32外设的过程,防止以后忘记。 SPI 配置步骤 SPI总线初始化 spi_bus_config_t buscfg {.miso_io_num …