【Flink-scala】DataStream编程模型之窗口计算-触发器-驱逐器

DataStream API编程模型

1.【Flink-Scala】DataStream编程模型之数据源、数据转换、数据输出
2.【Flink-scala】DataStream编程模型之 窗口的划分-时间概念-窗口计算程序


文章目录

  • DataStream API编程模型
  • 前言
  • 1.触发器
    • 1.1 代码示例
  • 2.驱逐器
    • 2.1 代码示例
  • 总结


前言

本小节我想把 窗口计算中 的触发器和驱逐器讲完
然后开始水位线,延迟数据处理,状态编程等。


1.触发器

触发器决定了窗口何时由窗口计算函数进行处理。
(触发器就类比枪的扳机,触发后 计算函数开始计算,计算函数在【Flink-scala】DataStream编程模型之 窗口的划分-时间概念-窗口计算程序)

每个窗口分配器都带有一个默认触发器。如果默认触发器不能满足业务需求,就需要自定义触发器。

实现自定义触发器的方法很简单,只需要继承Trigger接口并实现它的方法即可。
Trigger接口有五种方法,允许触发器对不同的事件作出反应,
具体如下:

  1. onElement()方法:每个元素被添加到窗口时调用;
  2. onEventTime()方法:当一个已注册的事件时间计时器启动时调用;
  3. onProcessingTime()方法:当一个已注册的处理时间计时器启动时调用;
  4. onMerge()方法:与状态性触发器相关,当使用会话窗口时,两个触发器对应的窗口合并时,合并两个触发器的状态;
  5. clear()方法:执行任何需要清除的相应窗口。
    在这里插入图片描述

触发器通过 TriggerContext 来管理和检查状态。
在触发器中,我们通常会使用 状态 来记录窗口中的一些信息,如已处理的事件数量或累计的值。这些状态决定了窗口是否应当触发计算。

触发器中的 TriggerResult 有几个重要的结果:

CONTINUE:表示窗口继续等待更多的事件,不触发计算。
FIRE:表示触发窗口计算并输出结果。
PURGE:表示删除某些数据,通常在某些特殊场景下使用。

1.1 代码示例

假设股票价格数据流连续不断到达系统,现在需要对到达的数据进行监控,每到达5条数据就触发计算。实现该功能的代码如下:

import java.util.Calendar
import org.apache.flink.api.common.functions.ReduceFunction
import org.apache.flink.api.common.state.ReducingStateDescriptor
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.source.RichSourceFunction
import org.apache.flink.streaming.api.functions.source.SourceFunction.SourceContext
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.triggers.{Trigger, TriggerResult}
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import scala.util.Randomcase class StockPrice(stockId:String,timeStamp:Long,price:Double)object TriggerTest {def main(args: Array[String]) {//创建执行环境val env = StreamExecutionEnvironment.getExecutionEnvironment//设置程序并行度env.setParallelism(1)//设置为处理时间env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)//创建数据源,股票价格数据流val source = env.socketTextStream("localhost", 9999)//指定针对数据流的转换操作逻辑val stockPriceStream = source.map(s => s.split(",")).map(s=>StockPrice(s(0).toString,s(1).toLong,s(2).toDouble))val sumStream = stockPriceStream.keyBy(s => s.stockId).timeWindow(Time.seconds(50)).trigger(new MyTrigger(5)).reduce((s1, s2) => StockPrice(s1.stockId,s1.timeStamp, s1.price + s2.price))//打印输出sumStream.print()//程序触发执行env.execute("Trigger Test")}class MyTrigger extends Trigger[StockPrice, TimeWindow] {//触发计算的最大数量private var maxCount: Long = _//记录当前数量的状态
private lazy val countStateDescriptor: ReducingStateDescriptor[Long] = new ReducingStateDescriptor[Long]("counter", new Sum, classOf[Long])def this(maxCount: Int) {this()this.maxCount = maxCount      
}override def onProcessingTime(time: Long, window: TimeWindow, ctx: Trigger.TriggerContext): TriggerResult = {TriggerResult.CONTINUE
}override def onEventTime(time: Long, window: TimeWindow, ctx: Trigger.TriggerContext): TriggerResult = {TriggerResult.CONTINUE
} override def onElement(element: StockPrice, timestamp: Long, window: TimeWindow, ctx: Trigger.TriggerContext): TriggerResult = {val countState = ctx.getPartitionedState(countStateDescriptor)//计数状态加1countState.add(1L)      if (countState.get() >= this.maxCount) {//达到指定指定数量       //清空计数状态countState.clear()//触发计算        TriggerResult.FIRE} else {TriggerResult.CONTINUE}}//窗口结束时清空状态override def clear(window: TimeWindow, ctx: Trigger.TriggerContext): Unit = {println("窗口结束时清空状态")ctx.getPartitionedState(countStateDescriptor).clear()}//更新状态为累加值class Sum extends ReduceFunction[Long] {override def reduce(value1: Long, value2: Long): Long = value1 + value2} }
}

注意 这一行代码:

val sumStream = stockPriceStream.keyBy(s => s.stockId).timeWindow(Time.seconds(50)).trigger(new MyTrigger(5)).reduce((s1, s2) => StockPrice(s1.stockId,s1.timeStamp, s1.price + s2.price))

在该代码中,MyTrigger 是一个自定义触发器,它控制在窗口中积累一定数量的事件后触发计算。

具体来说,窗口中的数据会根据 StockPrice 的数量来决定是否触发计算,而不是依赖于时间 。

接下来分析代码,

def this(maxCount: Int) {this()this.maxCount = maxCount      
}

这是它的主构造函数,它接受一个 maxCount 参数,表示在触发器中窗口内允许的最大元素数量。也就是说,窗口中的元素数达到 maxCount 时,触发器会触发计算(即调用 TriggerResult.FIRE)。
.trigger(new MyTrigger(5))表示创建一个 MyTrigger 的实例,并传入一个 maxCount 为 5 的参数,意思是窗口中最大允许 5 个元素,达到该数量后,窗口会触发计算。

private lazy val countStateDescriptor: ReducingStateDescriptor[Long] = new ReducingStateDescriptor[Long]("counter", new Sum, classOf[Long])

lazy:表示这是一个延迟初始化的变量。只有在第一次使用 countStateDescriptor 时,才会初始化它。这在性能优化上有作用,避免了不必要的初始化开销。

ReducingStateDescriptor 是 Flink 提供的一个状态描述符,它用于定义一个可减少的状态。这个状态会随着事件的到来不断累积,并且可以执行自定义的聚合操作。在 ReducingStateDescriptor 中,状态值的更新是通过 ReduceFunction 来实现的。

在这里,ReducingStateDescriptor[Long] 定义了一个状态,它的值是 Long 类型,并且该状态将执行 聚合操作(即对 Long 类型的值进行合并)。

ReducingStateDescriptor 的构造函数接受三个参数:

1.状态名称:“counter”
这是该状态的名称,用于在 Flink 的状态后端存储中标识该状态。

2.聚合操作:new Sum
这是一个 ReduceFunction 的实例,它定义了如何合并状态。在这个例子中,Sum 类是一个自定义的 ReduceFunction,用于对 Long 类型的值进行加法操作。

3.状态类型:classOf[Long]
这是状态的类型。classOf[Long] 表示状态值的类型是 Long,用于在 Flink 的状态管理中描述状态类型。

ClassOf(Long)这是 Scala 反射机制的语法,用于获取 Long 类型的 Class 对象。它在这里用于指定状态值的类型,以便 Flink 的状态管理能够正确地处理状态。

接下来的几个方法**TriggerResult.CONTINUE* 表示继续,不触发计算。
接下来是onElement方法

val countState = ctx.getPartitionedState(countStateDescriptor)

然后计数器+1,加到5就触发。
看是否到达maxcount。到达就触发,不到达就不触发,

自己的疑惑:才开始看代码的时候我一直纠结ctx( ctx.getPartitionedState(countStateDescriptor))这是从哪里来的,这个是

org.apache.flink.streaming.api.windowing.triggers.Trigger

下面的实例化对象,直接使用即可。

代码最后:
Sum类:它的作用是在状态更新时执行对状态的累加操作。

为什么用 Sum 作为累加器?

由于我们在 Trigger 中的 onElement 方法使用了 ctx.getPartitionedState(countStateDescriptor) 来获取一个 ReducingState(累加状态),这个状态将会不断地被更新,每次一个新元素进入时,都会触发 reduce 操作。

Sum 类就是定义了如何对这个 ReducingState 状态进行累加操作。
ReduceFunction 提供了累加器的逻辑,这样当多个元素进来时,value1 和 value2 就会被相加,最终在窗口中保持一个累积的状态。

2.驱逐器

学完上面的,学个单词:Evictor
在这里插入图片描述
驱逐器是Flink窗口机制的一个可选择组件。

驱逐 汉语意思就是 赶走,作用就是对进入窗口前后的数据进行驱逐(就是不接收,不要,你走 )

Flink内部实现了三种驱逐器,包括CountEvictor、DeltaEvictor和TimeEvictor。

三种驱逐器的功能如下:
CountEvictor:保持在窗口中具有固定数量的记录,将超过指定大小的数据在窗口计算之前删除;

DeltaEvictor:使用DeltaFunction和一个阈值,来计算窗口缓冲区中的最后一个元素与其余每个元素之间的差值,并删除差值大于或等于阈值的元素;

TimeEvictor:以毫秒为单位的时间间隔(interval)作为参数,对于给定的窗口,找到元素中的最大的时间戳max_ts,并删除时间戳小于max_ts - interval的所有元素。

在使用窗口函数之前被逐出的元素将不被处理。
默认情况下,所有内置的驱逐器在窗口函数之前使用。

和触发器一样,用户也可以通过实现Evictor接口完成自定义的驱逐器。
自定义驱逐器时,需要复写Evictor接口的两个方法:
evictBefore()和evictAfter()。
其中,evictBefore()方法定义数据在进入窗口函数计算之前执行驱逐操作的逻辑,
evictAfter()方法定义数据在进入窗口函数计算之后执行驱逐操作的逻辑。

2.1 代码示例

这个代码在做的事:统计窗口内股票价的平均值,并删除小于0的记录

import java.time.Duration
import java.util
import org.apache.flink.api.common.eventtime.{SerializableTimestampAssigner, WatermarkStrategy}
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala.function.ProcessWindowFunction
import org.apache.flink.streaming.api.windowing.evictors.Evictor
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.streaming.runtime.operators.windowing.TimestampedValue
import org.apache.flink.util.Collectorcase class StockPrice(stockId:String,timeStamp:Long,price:Double)
object EvictorTest {def main(args: Array[String]) {//设置执行环境val env = StreamExecutionEnvironment.getExecutionEnvironment//设置程序并行度env.setParallelism(1)//设置为处理时间env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)//创建数据源,股票价格数据流val source = env.socketTextStream("localhost", 9999)//指定针对数据流的转换操作逻辑val stockPriceStream = source.map(s => s.split(",")).map(s=>StockPrice(s(0).toString,s(1).toLong,s(2).toDouble))val sumStream = stockPriceStream.assignTimestampsAndWatermarks(WatermarkStrategy//为了测试方便,这里把水位线设置为0.forBoundedOutOfOrderness[StockPrice](Duration.ofSeconds(0)).withTimestampAssigner(new SerializableTimestampAssigner[StockPrice] {override def extractTimestamp(element: StockPrice, recordTimestamp: Long): Long = element.timeStamp})).keyBy(s => s.stockId).timeWindow(Time.seconds(3)).evictor(new MyEvictor()) //自定义驱逐器.process(new MyProcessWindowFunction())  //自定义窗口计算函数//打印输出sumStream.print() //程序触发执行 env.execute("Evictor Test")}class MyEvictor() extends Evictor[StockPrice, TimeWindow] {override def evictBefore(iterable: java.lang.Iterable[TimestampedValue[StockPrice]], i: Int, w: TimeWindow, evictorContext: Evictor.EvictorContext): Unit = {val ite: util.Iterator[TimestampedValue[StockPrice]] = iterable.iterator()while (ite.hasNext) {val elment: TimestampedValue[StockPrice] = ite.next()println("驱逐器获取到的股票价格:" + elment.getValue().price)//模拟去掉非法参数数据if (elment.getValue().price <= 0) {println("股票价格小于0,删除该记录")ite.remove()}}} 
override def evictAfter(iterable: java.lang.Iterable[TimestampedValue[StockPrice]], i: Int, w: TimeWindow, evictorContext: Evictor.EvictorContext): Unit = {
//不做任何操作}}class MyProcessWindowFunction extends ProcessWindowFunction[StockPrice, (String, Double), String, TimeWindow] {// 一个窗口结束的时候调用一次(一个分组执行一次),不适合大量数据,全量数据保存在内存中,会造成内存溢出override def process(key: String, context: Context, elements: Iterable[StockPrice], out: Collector[(String, Double)]): Unit = {// 聚合,注意:整个窗口的数据保存到Iterable,里面有很多行数据var sumPrice = 0.0;elements.foreach(stock => {sumPrice = sumPrice + stock.price})out.collect(key, sumPrice/elements.size)}}
}

myEvictor 是我们自定义的驱逐器类,它实现了 Evictor[StockPrice, TimeWindow] 接口.
在Evictor类中定义了before和after两个方法。
这着重看before,after没做什么。

override def evictBefore(iterable: java.lang.Iterable[TimestampedValue[StockPrice]], i: Int, w: TimeWindow, evictorContext: Evictor.EvictorContext): Unit = {val ite: util.Iterator[TimestampedValue[StockPrice]] = iterable.iterator()while (ite.hasNext) {val elment: TimestampedValue[StockPrice] = ite.next()println("驱逐器获取到的股票价格:" + elment.getValue().price)if (elment.getValue().price <= 0) {println("股票价格小于0,删除该记录")ite.remove()}}

参数的迭代器里,每个元素都是TimestampedValue[StockPrice]。
i表示要处理的数据量。
evictorContext:这是 Evictor.EvictorContext 类型,它提供了访问驱逐器上下文的接口。在此方法中并未使用,通常它可以用于管理驱逐操作的状态或者提供更多的上下文信息。
while里面的代码就不解释啦。

这里的参数太长,且陌生,多解释一下。
在窗口中运行输入

stock_1,1602031567000,8
stock_1,1602031568000,-4
stock_1,1602031569000,3
stock_1,1602031570000,-8
stock_1,1602031571000,9
stock_1,1602031572000,10

输出后的结果是:

驱逐器获取到的股票价格:8.0
驱逐器获取到的股票价格:-4.0
股票价格小于0,删除该记录
(stock_1,8.0)
驱逐器获取到的股票价格:3.0
驱逐器获取到的股票价格:-8.0
股票价格小于0,删除该记录
驱逐器获取到的股票价格:9.0
(stock_1,6.0)
驱逐器获取到的股票价格:10.0
(stock_1,10.0)

驱逐器会在每个窗口开始时检查所有输入的事件,并对那些满足特定条件的事件(在本例中,股票价格 <= 0)进行处理并移除。

stock_1, 1602031567000, 8 — 股票价格大于0,保留。
stock_1, 1602031568000, -4 — 股票价格小于0,驱逐。
stock_1, 1602031569000, 3 — 股票价格大于0,保留。
stock_1, 1602031570000, -8 — 股票价格小于0,驱逐。
stock_1, 1602031571000, 9 — 股票价格大于0,保留。
stock_1, 1602031572000, 10 — 股票价格大于0,保留。
驱逐器输出的处理结果:
窗口 1(时间区间:1602031567000 - 1602031570000,窗口大小 3秒):

该窗口内剩下的有效记录:stock_1, 1602031567000, 8 和 stock_1, 1602031569000, 3(-4 和 -8 被驱逐)。
计算平均价格:(8 + 3) / 2 = 5.5
输出: (stock_1, 8.0)(按窗口内第一个事件的 stockId 输出)
窗口 2(时间区间:1602031569000 - 1602031572000,窗口大小 3秒):

该窗口内剩下的有效记录:stock_1, 1602031569000, 3 和 stock_1, 1602031571000, 9(-8 被驱逐)。
计算平均价格:(3 + 9) / 2 = 6.0
输出: (stock_1, 6.0)(按窗口内第一个事件的 stockId 输出)
窗口 3(时间区间:1602031571000 - 1602031574000,窗口大小 3秒):

该窗口内剩下的有效记录:stock_1, 1602031571000, 9 和 stock_1, 1602031572000, 10。
计算平均价格:(9 + 10) / 2 = 9.5
输出: (stock_1, 10.0)(按窗口内第一个事件的 stockId 输出)

输出后的结果是:

驱逐器获取到的股票价格:8.0
驱逐器获取到的股票价格:-4.0
股票价格小于0,删除该记录
(stock_1,8.0)
驱逐器获取到的股票价格:3.0
驱逐器获取到的股票价格:-8.0
股票价格小于0,删除该记录
驱逐器获取到的股票价格:9.0
(stock_1,6.0)
驱逐器获取到的股票价格:10.0
(stock_1,10.0)

总结

以上就是今天要讲的内容,触发器和驱逐器。下一小节应该讲水位线啦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/62608.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3使用monaco编辑器(VSCode网页版)

vue3使用monaco编辑器&#xff08;VSCode网页版&#xff09; 文章说明参考文章核心代码效果展示实践说明源码下载 文章说明 一直在找网页版的编辑器&#xff0c;网页版的VSCode功能很强大&#xff0c;这个monaco就是VSCode样式的编辑器&#xff0c;功能很强大&#xff0c;可以直…

UWB数字钥匙安全测距和场景应用

1. CCC数字钥匙 2021年7月CCC将UWB定义为第三代数字钥匙的核心技术&#xff0c;并发布CCC R3&#xff08;第三代数字钥匙&#xff09;规范。 CCC R3是基于NFC/BLE/UWB作为基础的无线电技术的使用&#xff0c;该系统采用非对称密码技术对车辆和设备进行相互签名认证&#xff0…

SpringBoot小知识(2):日志

日志是开发项目中非常重要的一个环节&#xff0c;它是程序员在检查程序运行的手段之一。 1.日志的基础操作 1.1 日志的作用 编程期调试代码运营期记录信息&#xff1a; * 记录日常运营重要信息(峰值流量、平均响应时长……) * 记录应用报错信息(错误堆栈) * 记录运维过程数据(…

SAP Native SQL 的简单说明

Open SQL访问数据字典中声明的数据库表&#xff0c;不区分数据库类型&#xff0c;执行时会自动转换为对应的语句&#xff0c;且可以使用本地缓存。Native SQL使用特定于数据库的SQL语句,但是可以访问比Open SQL 更多的表&#xff0c;更多的操作&#xff0c;缺点也很明显&#x…

ARP欺骗-监控网络

kali: 使用arp-scan -l 查看同个局域网 windows arp -a 查看地址的物理地址 192.168.21.2 对应的是00-50-56-f5-d5-f0 攻击利用: 我们要让目标ip的流量经过我的网卡,从网关出去 使用的开启 echo 1 > /proc/sys/net/ipv4/ip_forward 当为0时&#xff0c;我们不转发&…

pycharm链接neo4j(导入文件)

1.新建csv文件 2.写入文件 3.运行代码 import csv from py2neo import Graph, Node# 连接到Neo4j数据库&#xff0c;使用Bolt协议 graph Graph("bolt://localhost:7687", auth("neo4j", "password"))# 读取CSV文件 with open(D:\\Users\\ran…

数据结构4——栈和队列

目录 1.栈 1.1.栈的概念及结构 1.2栈的实现 2.队列 2.1队列的概念及结构 2.2队列的实现 1.栈 1.1.栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一段称为栈顶&#xff0c;另一端称为…

SSM搭建(1)——配置MyBatis

目录 一、框架概述 1.什么是JDBC&#xff1f; 2.JDBC基本流程 3.JDBC的缺点 二、MyBatis的入门程序 1. 创建数据库和表结构 2. MyBatis入门流程总结 3. MyBatis的入门步骤 &#xff08;1&#xff09; 创建maven的项目&#xff0c;创建Java工程即可。 &…

Zero to JupyterHub with Kubernetes上篇 - Kubernetes 离线二进制部署

前言&#xff1a; 纯个人记录使用。 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。 k8s二进…

阻塞式队列

目录 一、阻塞队列 阻塞队列的概念 生产者消费者模型 二、自定义实现阻塞队列 一、阻塞队列 阻塞队列的概念 队列我们并不默认&#xff0c;一提起队列&#xff0c;我们立马就能想到 "先进先出"的特性。 今天我们就来学习一下特殊的队列: 阻塞队列&#xff0c;它…

开发一套ERP 第八弹 RUst 插入数据

更全面的报错,方便检查错误在哪里,现代高级语言越来越智能 还是得看下原文档怎么操作的 src 目录为crate 的根目录 想在crate 中模块相互引入需要在 main 中声明,各个模块,然后才能在各个模块中相互引入和使用 原始工程引入,避免直接使用 lib.rs 回合cargo 中的一些 工程管理出…

剖析 SpringBoot 于夕阳红公寓管理系统架构搭建的核心作用

3 系统分析 本文作者在确定了研究的课题之后&#xff0c;从各大数字图书馆下载文献来阅读&#xff0c;并了解同类型的网站具备的大致功能&#xff0c;然后与本系统用户的实际需求结合进行分析&#xff0c;得出本系统要研究的具体功能与性能。虽然分析系统这一阶段性工作主要是确…

30分钟学会正则表达式

正则表达式是对字符串操作的一种逻辑公式&#xff0c;就是用事先定义好的一些特定字符、及这些特定字符的组合&#xff0c;组成一个“规则字符串”&#xff0c;这个“规则字符串”用来表达对字符串的一种过滤逻辑。 作用 匹配 查看一个字符串是否符合正则表达式的语法 搜索 正…

电子应用设计方案-33:智能AI投影仪系统方案设计

智能 AI 投影仪系统方案设计 一、引言 随着科技的不断进步&#xff0c;投影仪在家庭娱乐、商务办公和教育培训等领域的应用越来越广泛。智能 AI 投影仪作为一种创新的投影设备&#xff0c;结合了人工智能技术&#xff0c;为用户带来更便捷、智能和个性化的使用体验。 二、系统…

【微服务】SpringBoot 对接飞书多维表格事件回调监听流程详解

目录 一、前言 二、前置准备 2.1 创建一个应用 2.2 准备一张测试使用的多维表 2.3 获取对接文档 2.4 工程中添加SDK 三、对接过程 3.1 配置Encrypt Key 和 Verification Token 3.2 配置订阅方式 3.3 添加事件 3.4 申请权限 3.5 编写订阅代码 3.6 订阅文档事件 3.7…

【优选算法篇】两队接力跑:双指针协作解题的艺术(下篇)

文章目录 须知 &#x1f4ac; 欢迎讨论&#xff1a;如果你在学习过程中有任何问题或想法&#xff0c;欢迎在评论区留言&#xff0c;我们一起交流学习。你的支持是我继续创作的动力&#xff01; &#x1f44d; 点赞、收藏与分享&#xff1a;觉得这篇文章对你有帮助吗&#xff1…

Y20030018基于Java+Springboot+mysql+jsp+layui的家政服务系统的设计与实现 源代码 文档

家政服务系统的设计与实现 1.摘要2.开发目的和意义3.系统功能设计4.系统界面截图5.源码获取 1.摘要 随着人们生活水平的提高&#xff0c;老龄化、少子化等多重因素影响&#xff0c;我国对家政服务人群的需求与日俱增。家政服务行业对我国的就业和社会效益贡献也与日俱增&#…

南京仁品耳鼻喉专科医院:12月启动公益义诊月

专业医疗资源送至“家门口”&#xff01;南京仁品耳鼻喉专科医院启动公益义诊月 随着2024年即将步入尾声&#xff0c;南京仁品耳鼻喉医院为回馈社会&#xff0c;提升公众健康福祉&#xff0c;将于12月隆重推出“三甲专家公益义诊月”活动。此次活动旨在通过汇聚众多耳鼻喉领域…

ospf协议(动态路由协议)

ospf基本概念 定义 OSPF 是典型的链路状态路由协议&#xff0c;是目前业内使用非常广泛的 IGP 协议之一。 目前针对 IPv4 协议使用的是 OSPF Version 2 &#xff08; RFC2328 &#xff09;&#xff1b;针对 IPv6 协议使用 OSPF Version 3 &#xff08; RFC2740 &#xff09;。…

现代网络架构PCI DSS合规范围确定和网络分割措施实施探讨

本文为atsec和作者技术共享类文章&#xff0c;旨在共同探讨信息安全业界的相关话题。未经许可&#xff0c;任何单位及个人不得以任何方式或理由对本文的任何内容进行修改。转载请注明&#xff1a;atsec信息安全和作者名称 1 引言 支付卡行业数据安全标准 &#xff08;P…