YOLO系列论文综述(从YOLOv1到YOLOv11)【第15篇(完结):讨论和未来展望】

总结

  • 0 前言
  • 1 YOLO与人工通用智能(AGI)
  • 2 YOLO作为“能够行动的神经网络”
  • 3 具身人工智能(EAI)
  • 4 边缘设备上的YOLO
  • 5 评估统计指标的挑战
  • 6 YOLO与环境影响


YOLO系列博文:

  1. 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】
  2. 【第2篇:YOLO系列论文、代码和主要优缺点汇总】
  3. 【第3篇:YOLOv1——YOLO的开山之作】
  4. 【第4篇:YOLOv2——更好、更快、更强】
  5. 【第5篇:YOLOv3——多尺度预测】
  6. 【第6篇:YOLOv4——最优速度和精度】
  7. 【第7篇:YOLOv5——使用Pytorch框架、AutoAnchor、多尺度预训练模型】
  8. 【第8篇:YOLOv6——更高的并行度、引入量化和蒸馏以提高性能加速推理】
  9. 【第9篇:YOLOv7——跨尺度特征融合】
  10. 【第10篇:YOLOv8——集成检测、分割和跟踪能力】
  11. 【第11篇:YOLO变体——YOLO+Transformers、DAMO、PP、NAS】
  12. 【第12篇:YOLOv9——可编程梯度信息(PGI)+广义高效层聚合网络(GELAN)】
  13. 【第13篇:YOLOv10——实时端到端物体检测】
  14. 【第14篇:YOLOv11——在速度和准确性方面具有无与伦比的性能】
  15. 【第15篇(完结):讨论和未来展望】

0 前言

本文研究了十几个个YOLO版本,从最初的YOLO模型到最新的YOLOv8。通过对比,我们可以确定几个关键的模式:

  • 锚Anchor:最初的YOLO模型相对简单,没有采用锚点,而最先进的模型则依赖于带有锚点的两阶段检测器。YOLOv2采用了锚点,从而提高了边界盒的预测精度。这种趋势持续了五年,直到YOLOX引入了一个无锚的方法,取得了最先进的结果。从那时起,随后的YOLO版本已经放弃了锚的使用;
  • 框架:最初,YOLO是使用Darknet框架开发的,后续版本也是如此。然而,当Ultralytics将YOLOv3 移植到PyTorch时,其余的YOLO版本都是使用PyTorch开发的,导致了增强功能的激增。另一个利用的深度学习语言是PaddlePaddle,一个最初由百度开发的开源框架;
  • 骨干Backbone:YOLO模型的骨干架构随着时间的推移发生了重大变化。从由简单的卷积层和最大集合层组成的Darknet架构开始,后来的模型在YOLOv4中加入了跨阶段部分连接(CSP),在YOLOv6和YOLOv7中加入了重新参数化,并在DAMO-YOLO中加入了神经架构搜索;
  • 性能:虽然YOLO模型的性能随着时间的推移有所提高,但值得注意的是,它们往往优先考虑平衡速度和准确性,而不是只关注准确性。这种权衡是YOLO框架的一个重要方面,允许在各种应用中进行实时物体检测。

预计YOLO变体将继续改进对小目标物体的检测性能,特别是在进入如精密制造等更专业领域时。可以结合注意力机制以增强小物体检测,而视觉变换器的使用则可能进一步提高YOLO捕捉全局上下文依赖关系的能力,这一趋势表明需要在保持高精度的同时满足严格帧率要求的轻量级架构上进行改进。随着YOLO的发展,满足细分应用需求将推动架构设计和优化的进一步创新,确保其在对精确度和效率有严格要求的领域中持续相关性。例如,通过像ChatGPT这样的模型来促进语音命令与监控系统的集成,可以改变安全机制,使其更加互动和响应迅速。在医疗保健领域,结合医学影像、历史患者数据和实时症状描述,可以显著提高医疗响应的个性化和准确性。

展望未来,YOLO适应多模态进步的能力将在开创下一代智能应用方面发挥关键作用。从既能解释路标又能理解行人手势的自动驾驶汽车,到能根据视觉线索和语音指令做出反应的智能家居,YOLO与更广泛的数据类型和更深层次的上下文理解相结合,预示着人工智能的一个划时代阶段。这一变革阶段有望大幅提高机器视觉系统的交互性和认知能力,标志着视觉过程自动化的一个关键转变。

1 YOLO与人工通用智能(AGI)

AGI指的是具有人类水平或更高智能的智能代理,能够解决各种复杂问题。YOLO作为专注于目标检测的专业AI,突出了处理和解释视觉数据的关键能力,成为AGI的一个关键组成部分。一个AGI系统需要将类似于YOLO的目标检测与其他认知能力(如自然语言理解和推理)结合起来,以实现实时执行各种任务。例如,配备AGI的机器人可以使用YOLO进行视觉识别,以导航并与环境互动,同时利用自然语言模型来理解和响应口头指令。这种集成将展示出类似人类能力的多功能性和通用智能,使AGI系统能够无缝执行复杂且多样化的任务,从而更接近实现真正的AGI。

2 YOLO作为“能够行动的神经网络”

这一代神经网络以其先进的视觉和语言能力令人惊叹,推动了AI感知和解释能力的边界。然而,下一代神经网络将不仅限于理解,还能在实时中采取行动并执行任务。YOLO准备在这个转型中扮演关键角色。它在目标检测中的无与伦比的速度和准确性使其成为需要即时响应的应用的理想选择,如自动驾驶、机器人技术和实时监控。随着我们走向一个AI不仅能看、能说,还能自主执行复杂任务的未来,YOLO将在连接感知与行动之间起到关键作用。其中一个项目是“BEHAVIOUR”,这是一个以人为中心的模拟基准,用于评估斯坦福大学[287]的具身AI解决方案。

3 具身人工智能(EAI)

具身人工智能(EAI)是指与物理实体或身体集成的AI系统,允许它们以更自然和类人的方式与真实世界互动。将YOLO整合进这些系统中可以显著增强它们的感官能力,使它们能够更高效和准确地与物理世界互动。YOLO在具身AI中的应用包括自动驾驶车辆、机器人、人机交互、医疗保健等。

4 边缘设备上的YOLO

YOLO在边缘设备上的部署为未来的研发开辟了几条有希望的道路。一个潜在的方向是通过进一步的优化技术,如模型剪枝、量化以及开发专门的硬件加速器,提高算法在超低功耗微控制器和嵌入式系统等更为受限环境中的效率和准确性。此外,将YOLO与高级通信协议和边缘计算框架集成,可以促进边缘设备与集中式云服务之间的无缝协作,提升整体系统性能和可扩展性。探索YOLO与其他AI驱动功能(如异常检测和预测分析)的集成,可能在医疗保健、智慧城市和工业自动化等领域解锁新的应用。随着边缘计算的不断发展,YOLO适应支持联邦学习范式的调整,可以在保障数据隐私的同时实现对象检测模型的持续学习和改进。这些未来方向不仅会扩大YOLO的能力,还会大大推进智能边缘计算系统的发展。

5 评估统计指标的挑战

威胁:依赖单一的统计汇总指标来衡量YOLO的检测能力可能无法全面反映系统在各种YOLO应用中的表现,因此需要使用多个指标。
缓解:尽管存在这一局限性,我们的主要前提是所选指标使我们能够比较不同的YOLO系统,并充分评估它们的整体有效性。在跨不同应用综合评估检测系统时,认识到统计摘要固有的局限性至关重要。因此,我们旨在通过公开承认这些潜在威胁来提高评审的清晰度和可靠性,这种方法提供了一个对YOLO技术在不同领域中目标检测各方面限制的更细致的理解。

6 YOLO与环境影响

训练和重新训练YOLO非常耗能,导致大量的能源和水资源消耗,以及显著的二氧化碳排放。这种环境影响凸显了关于AI发展可持续性的担忧,强调了迫切需要更有效的做法来减少大规模模型训练的生态足迹。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/62590.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构4——栈和队列

目录 1.栈 1.1.栈的概念及结构 1.2栈的实现 2.队列 2.1队列的概念及结构 2.2队列的实现 1.栈 1.1.栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一段称为栈顶,另一端称为…

SSM搭建(1)——配置MyBatis

目录 一、框架概述 1.什么是JDBC? 2.JDBC基本流程 3.JDBC的缺点 二、MyBatis的入门程序 1. 创建数据库和表结构 2. MyBatis入门流程总结 3. MyBatis的入门步骤 (1) 创建maven的项目,创建Java工程即可。 &…

Stream API进行分组并收集某个属性到List

在Java中,使用Stream API进行分组并收集某个属性到List中是一种常见的操作。这可以通过Collectors.groupingBy和Collectors.mapping结合使用来实现。下面是一个具体的示例: 假设我们有一个Person类,其中包含name和age属性,我们想…

Zero to JupyterHub with Kubernetes上篇 - Kubernetes 离线二进制部署

前言: 纯个人记录使用。 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。 k8s二进…

阻塞式队列

目录 一、阻塞队列 阻塞队列的概念 生产者消费者模型 二、自定义实现阻塞队列 一、阻塞队列 阻塞队列的概念 队列我们并不默认,一提起队列,我们立马就能想到 "先进先出"的特性。 今天我们就来学习一下特殊的队列: 阻塞队列,它…

开发一套ERP 第八弹 RUst 插入数据

更全面的报错,方便检查错误在哪里,现代高级语言越来越智能 还是得看下原文档怎么操作的 src 目录为crate 的根目录 想在crate 中模块相互引入需要在 main 中声明,各个模块,然后才能在各个模块中相互引入和使用 原始工程引入,避免直接使用 lib.rs 回合cargo 中的一些 工程管理出…

剖析 SpringBoot 于夕阳红公寓管理系统架构搭建的核心作用

3 系统分析 本文作者在确定了研究的课题之后,从各大数字图书馆下载文献来阅读,并了解同类型的网站具备的大致功能,然后与本系统用户的实际需求结合进行分析,得出本系统要研究的具体功能与性能。虽然分析系统这一阶段性工作主要是确…

Oracle 插入数据的存储过程

Oracle 插入数据的存储过程 这是用来,把实时表里面的数据插入到某个表A获取到的字段neid,然后拼接成xxx_xxx_neid历史表,接着往里面插入数据 CREATE OR REPLACE PROCEDURE XXX自定义名 IS-- 定义变量v_ne_id_table_name VARCHAR2(100); …

30分钟学会正则表达式

正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。 作用 匹配 查看一个字符串是否符合正则表达式的语法 搜索 正…

电子应用设计方案-33:智能AI投影仪系统方案设计

智能 AI 投影仪系统方案设计 一、引言 随着科技的不断进步,投影仪在家庭娱乐、商务办公和教育培训等领域的应用越来越广泛。智能 AI 投影仪作为一种创新的投影设备,结合了人工智能技术,为用户带来更便捷、智能和个性化的使用体验。 二、系统…

【微服务】SpringBoot 对接飞书多维表格事件回调监听流程详解

目录 一、前言 二、前置准备 2.1 创建一个应用 2.2 准备一张测试使用的多维表 2.3 获取对接文档 2.4 工程中添加SDK 三、对接过程 3.1 配置Encrypt Key 和 Verification Token 3.2 配置订阅方式 3.3 添加事件 3.4 申请权限 3.5 编写订阅代码 3.6 订阅文档事件 3.7…

SpringBoot 项目中使用 spring-boot-starter-amqp 依赖实现 RabbitMQ

文章目录 前言1、application.yml2、RabbitMqConfig3、MqMessage4、MqMessageItem5、DirectMode6、StateConsumer:消费者7、InfoConsumer:消费者 前言 本文是工作之余的随手记,记录在工作期间使用 RabbitMQ 的笔记。 1、application.yml 使…

【优选算法篇】两队接力跑:双指针协作解题的艺术(下篇)

文章目录 须知 💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力! 👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗&#xff1…

ElasticSearch的学习

介绍 ElasticSearch(简称ES)是一个开源的分布式搜索和数据分析引擎,是用Java开发并且是当前最流行的开源的企业级搜索引擎,能够达到近实时搜索,它专门设计用于处理大规模的文本数据和实现高性能的全文检索。 Elastic…

Y20030018基于Java+Springboot+mysql+jsp+layui的家政服务系统的设计与实现 源代码 文档

家政服务系统的设计与实现 1.摘要2.开发目的和意义3.系统功能设计4.系统界面截图5.源码获取 1.摘要 随着人们生活水平的提高,老龄化、少子化等多重因素影响,我国对家政服务人群的需求与日俱增。家政服务行业对我国的就业和社会效益贡献也与日俱增&#…

南京仁品耳鼻喉专科医院:12月启动公益义诊月

专业医疗资源送至“家门口”!南京仁品耳鼻喉专科医院启动公益义诊月 随着2024年即将步入尾声,南京仁品耳鼻喉医院为回馈社会,提升公众健康福祉,将于12月隆重推出“三甲专家公益义诊月”活动。此次活动旨在通过汇聚众多耳鼻喉领域…

ospf协议(动态路由协议)

ospf基本概念 定义 OSPF 是典型的链路状态路由协议,是目前业内使用非常广泛的 IGP 协议之一。 目前针对 IPv4 协议使用的是 OSPF Version 2 ( RFC2328 );针对 IPv6 协议使用 OSPF Version 3 ( RFC2740 )。…

Linux - nfs服务器

五、nfs服务器 1、基础 NFS服务器可以让PC将网络中的NFS服务器共享的目录挂载到本地端的文件系统中,而在本地端的系统 中看来,那个远程主机的目录就好像是自己的一个磁盘分区一样。 由于NFS支持的功能比较多,而不同的功能都会使用不同的程…

现代网络架构PCI DSS合规范围确定和网络分割措施实施探讨

本文为atsec和作者技术共享类文章,旨在共同探讨信息安全业界的相关话题。未经许可,任何单位及个人不得以任何方式或理由对本文的任何内容进行修改。转载请注明:atsec信息安全和作者名称 1 引言 支付卡行业数据安全标准 (P…

第二讲:C++基础语法与程序结构

课程目标: 使学生掌握C的基本语法规则。教授学生如何编写简单的C程序,并理解程序的基本结构。通过实践,加深学生对C编程的理解和兴趣。 课程内容: 一、引言 回顾上一讲关于C的概述,强调学习基础语法的重要性。简要…