DICOM医学影像应用篇——伪彩色映射 在DICOM医学影像中的应用详解

目录

引言

伪彩色映射的概念

基本原理

查找表(Look-Up Table, LUT)

步骤

示例映射方案

实现伪彩色映射的C++代码

代码详解

伪彩色处理效果展示

总结

扩展知识

LUT 的基本概念

LUT 在伪彩色映射中的应用

示例


引言

        在医学影像处理中,伪彩色映射是一种重要的技术。通过将灰度图像转换为彩色图像,伪彩色映射可以有效地增强某些特征的可视性。本文将详细介绍伪彩色映射的概念、基本原理,包括查找表(Look-Up Table, LUT)的详细介绍,以及在C++中的实现方法。

伪彩色映射的概念

        伪彩色映射是一种处理图像的技术,它通过将灰度图像中的像素值映射到特定的颜色来实现彩色显示。医学影像中的灰度图经常用于表示不同密度或强度的区域,通过伪彩色映射,这些区域可以在视觉上更容易被识别和分析。

基本原理

        伪彩色映射的核心在于使用查找表(LUT)将每个灰度值映射到一个RGB颜色。这种映射方式使得某些结构在视觉上更加突出。以下是其基本步骤和查找表的详细介绍:

查找表(Look-Up Table, LUT)

  • 定义:查找表(LUT)是一种用于快速映射输入值到输出值的数据结构。在伪彩色映射中,LUT将灰度值映射到颜色值。

  • 创建LUT:LUT通常是一个包含256个条目的数组(假设灰度值范围为0到255)。每个条目存储一个RGB颜色。这个表可以预先计算并存储,以加速映射过程。

  • 使用LUT:一旦LUT建立,我们可以直接使用灰度值作为索引来查找对应的RGB颜色,这使得映射过程非常高效。

步骤

  1. 灰度值获取:读取图像中每个像素的灰度值。

  2. 查找表建立:定义LUT,其中每个可能的灰度值(0-255)对应一个预先设定的颜色值。

  3. 颜色映射:使用LUT将每个灰度值直接映射为RGB颜色。

  4. 生成彩色图像:用映射后的RGB值生成新的彩色图像。

示例映射方案

一个简单的彩虹映射方案可能如下:

  • 灰度值 0 至 85 映射为黑到红过渡。
  • 灰度值 86 至 170 映射为红到黄色过渡。
  • 灰度值 171 至 255 映射为黄色到白色过渡。

实现伪彩色映射的C++代码

下面是一个用C++实现伪彩色映射的示例代码,其中详细描述了如何使用LUT。

#include <iostream>
#include <vector>
#include <tuple>// 定义查找表
std::vector<std::tuple<int, int, int>> createColorLUT() {std::vector<std::tuple<int, int, int>> lut(256);for (int i = 0; i <= 255; ++i) {if (i < 85) {lut[i] = std::make_tuple(i * 3, 0, 0);  // 从黑到红} else if (i < 170) {lut[i] = std::make_tuple(255, (i - 85) * 3, 0);  // 从红到黄} else {lut[i] = std::make_tuple(255, 255, (i - 170) * 3);  // 从黄到白}}return lut;
}// 将灰度图像应用伪彩色映射
void applyPseudoColorMapping(const std::vector<std::vector<int>>& grayImage, std::vector<std::vector<std::tuple<int, int, int>>>& colorImage, const std::vector<std::tuple<int, int, int>>& lut) {int rows = grayImage.size();int cols = grayImage[0].size();// 遍历每个像素并应用颜色映射for (int i = 0; i < rows; ++i) {for (int j = 0; j < cols; ++j) {int grayValue = grayImage[i][j];colorImage[i][j] = lut[grayValue];  // 使用查找表进行映射}}
}int main() {// 示例灰度图像std::vector<std::vector<int>> grayImage = {{30, 80, 120},{50, 100, 150},{90, 110, 200}};// 初始化彩色图像std::vector<std::vector<std::tuple<int, int, int>>> colorImage(3, std::vector<std::tuple<int, int, int>>(3));// 创建查找表std::vector<std::tuple<int, int, int>> lut = createColorLUT();// 应用伪彩色映射applyPseudoColorMapping(grayImage, colorImage, lut);// 显示处理后的彩色图像for (const auto& row : colorImage) {for (const auto& color : row) {std::cout << "(" << std::get<0>(color) << ", " << std::get<1>(color) << ", " << std::get<2>(color) << ") ";}std::cout << std::endl;}return 0;
}

代码详解

  1. 创建查找表

    • createColorLUT函数生成一个256个元素的LUT,每个元素是一个RGB颜色。
    • LUT的设计基于简单的颜色过渡:从黑到红,再到黄,最后到白。
  2. 伪彩色映射应用

    • applyPseudoColorMapping函数使用LUT将灰度值直接映射到RGB颜色。
    • LUT的使用使得映射过程非常高效,因为查找是直接索引操作。
  3. 主函数展示

    • 初始化了一个简单的灰度图像。
    • 调用映射函数并输出彩色图像的内容。

伪彩色处理效果展示

总结

伪彩色映射通过使用查找表将灰度图像转换为彩色图像,增强了医学影像的特征可视性。本文详细介绍了LUT的概念和使用方法,并通过C++代码展示了如何实现这种映射。伪彩色映射在医学影像分析中具有重要的应用价值,能够有效帮助医疗专业人员进行更精确的诊断和分析。

扩展知识

LUT 的基本概念

         查找表(Look-Up Table,简称LUT)是一种用于快速查找和映射输入值到输出值的数据结构。在计算机科学和数字信号处理中,LUT是一种常用的优化工具,尤其在需要频繁进行相同类型的转换或查找操作时。

  • 结构:LUT 通常是一个数组或列表,其中每个索引对应一个输入值,每个条目存储相应的输出值。例如,对于一个256级灰度图像,可以创建一个256个元素的数组,其中每个元素对应一个灰度值。

  • 用途:通过预先计算和存储输入到输出的映射关系,LUT 可以在运行时提供非常快速的查找。尤其在需要高效进行某种变换的情况下(如色彩空间变换、伪彩色映射等),LUT 是非常有效的工具。

  • 优点:其主要优点在于提高处理速度。通过将复杂的计算转换为简单的查找操作,能显著减少计算负担。

LUT 在伪彩色映射中的应用

在伪彩色映射中,LUT 用于将灰度值快速映射到对应的颜色值(通常是RGB值)。每个灰度值直接作为索引来查找对应的RGB颜色,从而快速生成彩色图像。

示例

假设我们有一个简单的灰度到RGB的映射需求:

  • 灰度值 0-85 映射到红色。
  • 灰度值 86-170 映射到绿色。
  • 灰度值 171-255 映射到蓝色。

我们可以预先创建一个 LUT,存储每个灰度值对应的颜色:

std::vector<std::tuple<int, int, int>> lut(256);// 填充 LUT
for (int i = 0; i <= 255; ++i) {if (i <= 85) {lut[i] = std::make_tuple(255, 0, 0); // 红色} else if (i <= 170) {lut[i] = std::make_tuple(0, 255, 0); // 绿色} else {lut[i] = std::make_tuple(0, 0, 255); // 蓝色}
}

在图像处理过程中,我们可以直接使用灰度值作为索引进行查找:

int grayValue = 120; // 假设某个像素的灰度值
auto color = lut[grayValue]; // 直接查找颜色值

通过这种方式,伪彩色映射过程变得非常高效,因为每个像素的颜色转换仅仅是一次数组查找,而不必进行复杂的计算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/62334.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

韦东山stm32hal库--定时器喂狗模型按键消抖原理+实操详细步骤

一.定时器按键消抖的原理: 按键消抖的原因: 当我们按下按键的后, 端口从高电平变成低电平, 理想的情况是, 按下, 只发生一次中断, 中断程序只记录一个数据. 但是我们使用的是金属弹片, 实际的情况就是如上图所示, 可能会发生多次中断,难道我们要记录3/4次数据吗? 答:按键按下…

【Linux网络编程】第二弹---Socket编程入门指南:从IP、端口号到传输层协议及编程接口全解析

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【Linux网络编程】 目录 1、Socket 编程预备 1.1、理解源 IP 和目的 IP 1.2、认识端口号 1.2.1、端口号范围划分 1.2.2、理解 &q…

如何借助AI生成PPT,让创作轻松又高效

PPT是现代职场中不可或缺的表达工具&#xff0c;但同时也可能是令人抓狂的时间杀手。几页幻灯片的制作&#xff0c;常常需要花费数小时调整字体、配色与排版。AI的飞速发展为我们带来了革新——AI生成PPT的技术不仅让制作流程大大简化&#xff0c;还重新定义了效率与创意的关系…

基于时间维度优化“开源 AI 智能名片 S2B2C 商城小程序”运营策略:提升触达与转化效能

摘要&#xff1a; 随着数字化商业生态的蓬勃发展&#xff0c;“开源 AI 智能名片 S2B2C 商城小程序”融合前沿技术与创新商业模式&#xff0c;为企业营销与业务拓展带来新机遇。本文聚焦于用户时间场景维度&#xff0c;深入剖析如何依据不同时段用户行为特征&#xff0c;精准适…

【消息序列】详解(8):探秘物联网中设备广播服务

目录 一、概述 1.1. 定义与特点 1.2. 工作原理 1.3. 应用场景 1.4. 技术优势 二、截断寻呼&#xff08;Truncated Page&#xff09;流程 2.1. 截断寻呼的流程 2.2. 示例代码 2.3. 注意事项 三、无连接外围广播过程 3.1. 设备 A 启动无连接外围设备广播 3.2. 示例代…

vue3的prop

- 父组件需要传多个值给子组件 把值放对象&#xff0c;通过v-bind传整个对象 父组件 <script setup> import BlogPost from ./BlogPost.vue import { reactive } from vue; // 要传给子组件的所有值&#xff0c;用reactive包了该对象后&#xff0c;父组件的值变了&#…

Ubuntu下的Doxygen+VScode实现C/C++接口文档自动生成

Ubuntu下的DoxygenVScode实现C/C接口文档自动生成 1、 Doxygen简介 Doxygen 是一个由 C 编写的、开源的、跨平台的文档生成系统。最初主要用于生成 C 库的 API 文档&#xff0c;但目前又添加了对 C、C#、Java、Python、Fortran、PHP 等语言的支持。其从源代码中提取注释&…

uniapp强制修改radio-group内单选组件的状态方法

在uniapp开发中&#xff0c;需要在radio-group内部切换时做判断&#xff0c;提醒客户是否要变换radio的值&#xff0c;但是大家知道radio是单选组件&#xff0c;往往你点击后&#xff0c;是不能再修改状态的&#xff0c;就算你在点击后做判断&#xff0c;修改current的值&#…

数据结构-最短路径问题

一.问题分类 二.无权图单源最短路算法 dist[]数组记录的是个个顶点到源点的距离这个数组的下标表示顶点 源点到自己的距离是0,dist[s]0 path[]数组记录的是这个顶点的前驱&#xff0c;可以同过这个数组找到源点到个个顶点的距离 代码如下 void Unweighted(MGraph Graph, Ver…

Vue.js 实现用户注册功能

在本篇博客中&#xff0c;我们将通过一个简单的例子来展示如何使用 Vue.js 来实现一个用户注册功能。我们将创建一个包含用户名、邮箱和密码输入的表单&#xff0c;并在用户点击“创建账号”按钮时进行简单的验证。 完整代码 <!DOCTYPE html> <html lang"en&q…

【Java 学习】面向程序的三大特性:封装、继承、多态

引言 1. 封装1.1 什么是封装呢&#xff1f;1.2 访问限定符1.3 使用封装 2. 继承2.1 为什么要有继承&#xff1f;2.2 继承的概念2.3 继承的语法2.4 访问父类成员2.4.1 子类中访问父类成员的变量2.4.2 访问父类的成员方法 2.5 super关键字2.6 子类的构造方法 3. 多态3.1 多态的概…

impala入门与实践

1.impala基本介绍 impala是cloudera提供的一款高效率的sql查询工具&#xff0c;提供实时的查询效果&#xff0c;官方测试性能比hive快10到100倍&#xff0c;其sql查询比sparkSQL还要更加快速&#xff0c;号称是当前大数据领域最快的查询sql工具。impala是参照谷歌的新三篇论文…

结构方程模型(SEM)入门到精通:lavaan VS piecewiseSEM、全局估计/局域估计;潜变量分析、复合变量分析、贝叶斯SEM在生态学领域应用

目录 第一章 夯实基础 R/Rstudio简介及入门 第二章 结构方程模型&#xff08;SEM&#xff09;介绍 第三章 R语言SEM分析入门&#xff1a;lavaan VS piecewiseSEM 第四章 SEM全局估计&#xff08;lavaan&#xff09;在生态学领域高阶应用 第五章 SEM潜变量分析在生态学领域…

小米PC电脑手机互联互通,小米妙享,小米电脑管家,老款小米笔记本怎么使用,其他品牌笔记本怎么使用,一分钟教会你

说在前面 之前我们体验过妙享中心&#xff0c;里面就有互联互通的全部能力&#xff0c;现在有了小米电脑管家&#xff0c;老款的笔记本竟然用不了&#xff0c;也可以理解&#xff0c;毕竟老款笔记本做系统研发的时候没有预留适配的文件补丁&#xff0c;至于其他品牌的winPC小米…

python爬虫案例——猫眼电影数据抓取之字体解密,多套字体文件解密方法(20)

文章目录 1、任务目标2、网站分析3、代码编写1、任务目标 目标网站:猫眼电影(https://www.maoyan.com/films?showType=2) 要求:抓取该网站下,所有即将上映电影的预约人数,保证能够获取到实时更新的内容;如下: 2、网站分析 进入目标网站,打开开发者模式,经过分析,我…

一分钟食用前端测试框架Jest

安装 其实食用Jest是很简单的,我们只需要安装Jest即可 npm install --save-dev jestyarn add --dev jestpnpm add --save-dev jest ESmodule 本身来说,Jest是不支持Esmodule的,他支持CommonJS,我们需要Babel改一下 npm i --save-dev babel-jest babel/core babel/preset-env …

从 App Search 到 Elasticsearch — 挖掘搜索的未来

作者&#xff1a;来自 Elastic Nick Chow App Search 将在 9.0 版本中停用&#xff0c;但 Elasticsearch 拥有你构建强大的 AI 搜索体验所需的一切。以下是你需要了解的内容。 生成式人工智能的最新进展正在改变用户行为&#xff0c;激励开发人员创造更具活力、更直观、更引人入…

若依框架部署在网站一个子目录下(/admin)问题(

部署在子目录下首先修改vue.config.js文件&#xff1a; 问题一&#xff1a;登陆之后跳转到了404页面问题&#xff0c;解决办法如下&#xff1a; src/router/index.js 把404页面直接变成了首页&#xff08;大佬有啥优雅的解决办法求告知&#xff09; 问题二&#xff1a;退出登录…

【贪心算法第六弹——334.递增的三元子序列(easy)】

目录 1.题目解析 题目来源 测试用例 2.算法原理 3.实战代码 代码解析 本题属于最长递增子序列的简化版本&#xff0c;只需要判断能不能组成三位的递增子序列即可&#xff0c;建议先去看博主的另一篇博客可以更好的理解本篇博客&#xff1a;300.最长递增子序列 1.题目解析…

《TCP/IP网络编程》学习笔记 | Chapter 16:关于 I/O 流分离的其他内容

《TCP/IP网络编程》学习笔记 | Chapter 16&#xff1a;关于 I/O 流分离的其他内容 《TCP/IP网络编程》学习笔记 | Chapter 16&#xff1a;关于 I/O 流分离的其他内容分离 I/O 流2 次 I/O 流分离分离「流」的好处「流」分离带来的 EOF 问题 文件描述符的的复制和半关闭终止「流」…