数据科学与SQL:组距分组分析 | 区间分布问题

目录

0 问题描述

1 数据准备

2 问题分析

3 小结


0 问题描述

绝对值分布分析也可以理解为组距分组分析。对于某个指标而言,一个记录对应的指标值的绝对值,肯定落在所有指标值的绝对值的最小值和最大值构成的区间内,根据一定的算法,在把这个区间划分为等距离的几个小区间,统计落入这些区间的指标值的绝对值的情况,决策者就可以得到指标值的绝对值在各个区间的分布情况。

以销售表为例,销售表如下:

销售信息样例表(Sales)
countrysale_monthsales_numbersales_value
USA    2008-01-011200500000
USA    2008-02-011150450000
USA    2008-03-011300520000
USA    2008-04-011280510000
USA    2008-05-011350530000
USA    2008-06-011400535000
USA    2008-07-011300510000
USA    2008-08-011250460000
USA    2008-09-011400530000
USA    2008-10-011380520000
USA    2008-11-011450540000
USA    2008-12-011500545000
USA    2009-01-011600550000
USA    2009-02-011390532000
USA    2009-03-011730570000
USA    2009-04-011900600000
USA    2009-05-011850585000
USA    2009-06-013800780000
USA    2009-07-011700560000
USA    2009-08-011490542000
USA    2009-09-011830580000
USA    2009-10-012000610000
USA    2009-11-011950595000
USA    2009-12-011900590000

1 数据准备

create table sales asselect 'USA' country, '2008-01-01' sale_month, '1200' sales_number, '500000' sales_value union allselect 'USA' country, '2008-02-01' sale_month, '1150' sales_number, '450000' sales_value union allselect 'USA' country, '2008-03-01' sale_month, '1300' sales_number, '520000' sales_value union allselect 'USA' country, '2008-04-01' sale_month, '1280' sales_number, '510000' sales_value union allselect 'USA' country, '2008-05-01' sale_month, '1350' sales_number, '530000' sales_value union allselect 'USA' country, '2008-06-01' sale_month, '1400' sales_number, '535000' sales_value union allselect 'USA' country, '2008-07-01' sale_month, '1300' sales_number, '510000' sales_value union allselect 'USA' country, '2008-08-01' sale_month, '1250' sales_number, '460000' sales_value union allselect 'USA' country, '2008-09-01' sale_month, '1400' sales_number, '530000' sales_value union allselect 'USA' country, '2008-10-01' sale_month, '1380' sales_number, '520000' sales_value union allselect 'USA' country, '2008-11-01' sale_month, '1450' sales_number, '540000' sales_value union allselect 'USA' country, '2008-12-01' sale_month, '1500' sales_number, '545000' sales_value union allselect 'USA' country, '2009-01-01' sale_month, '1600' sales_number, '550000' sales_value union allselect 'USA' country, '2009-02-01' sale_month, '1390' sales_number, '532000' sales_value union allselect 'USA' country, '2009-03-01' sale_month, '1730' sales_number, '570000' sales_value union allselect 'USA' country, '2009-04-01' sale_month, '1900' sales_number, '600000' sales_value union allselect 'USA' country, '2009-05-01' sale_month, '1850' sales_number, '585000' sales_value union allselect 'USA' country, '2009-06-01' sale_month, '3800' sales_number, '780000' sales_value union allselect 'USA' country, '2009-07-01' sale_month, '1700' sales_number, '560000' sales_value union allselect 'USA' country, '2009-08-01' sale_month, '1490' sales_number, '542000' sales_value union allselect 'USA' country, '2009-09-01' sale_month, '1830' sales_number, '580000' sales_value union allselect 'USA' country, '2009-10-01' sale_month, '2000' sales_number, '610000' sales_value union allselect 'USA' country, '2009-11-01' sale_month, '1950' sales_number, '595000' sales_value union allselect 'USA' country, '2009-12-01' sale_month, '1900' sales_number, '590000' sales_value
;

2 问题分析

第一步:按照给定的分组方法,计算区间开始,区间结束的值。计算区间范围维度表DIM

select group_num, min_num + group_step * pos       begin_num --区间开始, min_num + group_step * (pos + 1) end_num   --区间结束, pos
from (select pos, group_num, group_step, min_numfrom (select--分组方法CEIL(1 + LOG(10, count_num) / LOG(10, 2))                             group_num,--极差/组数 =组距CEIL((max_num - min_num) / CEIL(1 + LOG(10, count_num) / LOG(10, 2))) group_step,min_numfrom (SELECT MAX(sales_number) max_num,MIN(sales_number) min_num,COUNT(*)          COUNT_NUMFROM sales) t) tlateral view posexplode(split(space(cast(group_num as int) - 1), space(1))) tmp as pos, value) t

 第二步:关联数据表SALES,计算落入区间范围的个数

with dim as (
select group_num, min_num + group_step * pos       begin_num --区间开始, min_num + group_step * (pos + 1) end_num   --区间结束, posfrom (select pos, group_num, group_step, min_numfrom (select--分组方法CEIL(1 + LOG(10, count_num) / LOG(10, 2))                             group_num,--极差/组数 =组距CEIL((max_num - min_num) / CEIL(1 + LOG(10, count_num) / LOG(10, 2))) group_step,min_numfrom (SELECT MAX(sales_number) max_num,MIN(sales_number) min_num,COUNT(*)          COUNT_NUMFROM sales) t) tlateral view posexplode(split(space(cast(group_num as int) - 1), space(1))) tmp as pos, value) t)select concat_ws('-', cast(b.begin_num as string), cast(b.end_num as string)) group_name, count(*)                                                           cnt
from dim bleft join sales a
WHERE a.sales_number >= b.begin_numAND a.sales_number < b.end_num
GROUP BY concat_ws('-', cast(b.begin_num as string), cast(b.end_num as string))

3 小结

组距分组是将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组。组距分组是数值型数据分组的基本形式。离散变量的整数值如果变动幅度较大,而且总体单位数N又很大,则也要进行组距分组。 在组距分组中,各组之间的取值界限称为组限,一个组的最小值称为下限,最大值称为上限;上限与下限的差值称为组距;上限与下限值的平均数称为组中值,它是一组变量值的代表值。 

具体步骤如下:

1. 确定组数。一组数据的组数一般与数据本身的特点及数据的多少有关。由于分组的目的之一是为了观察数据分布的特征,因此组数的多少应适中。如组数太少,数据的分布就会过于集中,组数太多,数据的分布就会过于分散,这都不便于观察数据分布的特征和规律。组数的确定应以能够显示数据的分布特征和规律为目的。

2.确定各组的组距。组距是一个组的上限与下限的差,可根据全部数据的最大值和最小值(即极差)及所分的组数来确定,即组距=(最大值-最小值)/组数。

3.根据分组整理成频数分布表。

 

如果您觉得本文还不错,对你有帮助,那么不妨可以关注一下我的数字化建设实践之路专栏,这里的内容会更精彩。

专栏 原价99,现在活动价59.9,按照阶梯式增长,还差5个人上升到69.9,最终恢复到原价

 

专栏优势:
(1)一次收费持续更新。

(2)实战中总结的SQL技巧,帮助SQLBOY 在SQL语言上有质的飞越,无论你应对业务难题及面试都会游刃有余【全网唯一讲SQL实战技巧,方法独特】

SQL很简单,可你却写不好?每天一点点,收获不止一点点-CSDN博客

(3)实战中数仓建模技巧总结,让你认识不一样的数仓。【数据建模+业务建模,不一样的认知体系】(如果只懂数据建模而不懂业务建模,数仓体系认知是不全面的)

(4)数字化建设当中遇到难题解决思路及问题思考。

我的专栏具体链接如下:

 数字化建设通关指南_莫叫石榴姐的博客-CSDN博客 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/61681.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

量子感知机

神经网络类似于人类大脑&#xff0c;是模拟生物神经网络进行信息处理的一种数学模型。它能解决分类、回归等问题&#xff0c;是机器学习的重要组成部分。量子神经网络是将量子理论与神经网络相结合而产生的一种新型计算模式。1995年美国路易斯安那州立大学KAK教授首次提出了量子…

mysql in查询大数据量业务无法避免情境下优化

在 MySQL 中&#xff0c;IN 查询操作广泛用于从数据库中检索符合条件的多条记录&#xff0c;但当涉及到大数据量的 IN 查询时&#xff0c;性能可能会显著下降。特别是当 IN 子句中的元素数量非常大时&#xff0c;MySQL 需要对每个元素进行匹配&#xff0c;这会导致查询变得非常…

大语言模型---ReLU函数的计算过程及其函数介绍

文章目录 1. 概要2. ReLU定义 1. 概要 **ReLU 作用&#xff1a;**主要用于为神经网络引入非线性能力&#xff0c;作用是将输入中的整数保留原值&#xff0c;负数置为 0。 从而在层与层之间引入非线性&#xff0c;使神经网络能够拟合复杂的非线性关系。 **ReLU使用场景&#xf…

SPSS统计学:连续均匀分布

概念 连续均匀分布是指在某个连续区间上&#xff0c;随机变量取值的概率密度函数是常数的分布。假设连续均匀分布的区间为[a,b]&#xff0c;其中a是区间的下界&#xff0c;b是区间的上界。 方差的推导 连续均匀分布的方差计算中出现数字12&#xff0c;是因为在推导过程中&…

时间请求参数、响应

&#xff08;7&#xff09;时间请求参数 1.默认格式转换 控制器 RequestMapping("/commonDate") ResponseBody public String commonDate(Date date){System.out.println("默认格式时间参数 date > "date);return "{module : commonDate}"; }…

JAVA八股与代码实践----接口与抽象类的区别和用法

接口和抽象类的区别 关键字abstractinterface 实例化不能直接实例化不能直接实例化 方法可以有抽象和具体方法只能有抽象方法&#xff08;Java 8 支持默认方法&#xff09; 变量可以有普通变量只能有常量 (public static final) 继承单继承多继承 构造函数可以定义不允许…

python学习记录18

1 函数的定义 python中的函数指使用某个定义好的名字指代一段完整的代码&#xff0c;在使用名字时可以直接调用整个代码&#xff0c;这个名字叫做函数名。利用函数可以达到编写一次即可多次调用的操作&#xff0c;从而减少代码量。 函数分为内置函数与自定义函数。内置函数例…

设计模式:4、命令模式(双重委托)

目录 0、定义 1、命令模式包括四种角色 2、命令模式的UML类图 3、代码示例 0、定义 将一个请求封装为一个对象&#xff0c;从而使用户可用不同的请求对客户进行参数化&#xff1b;对请求排队或记录请求日志&#xff0c;以及支持可撤销的操作。 1、命令模式包括四种角色 接…

WPF动画

在 WPF&#xff08;Windows Presentation Foundation&#xff09;中&#xff0c;主要有两种类型的动画&#xff1a;属性动画&#xff08;Property Animation&#xff09;和关键帧动画&#xff08;Key - Frame Animation&#xff09;。属性动画用于简单地从一个起始值平滑地过渡…

VSCode汉化教程【简洁易懂】

我们安装完成后默认是英文界面。 找到插件选项卡&#xff0c;搜索“Chinese”&#xff0c;找到简体&#xff08;更具你的需要&#xff09;&#xff08;Microsoft提供&#xff09;Install。 安装完成后选择Change Language and Restart。

海洋通信船舶组网工业4G路由器应用

船舶是浩瀚海洋中探索与贸易的载体&#xff0c;更是船员们生活与工作的家园。为了在广阔的水域中搭建起稳定、高效的网络桥梁&#xff0c;工业4G路由器以卓越的通信组网能力&#xff0c;为船舶组网提供网络支持。 工业4G路由器以其强大的信号发射能力&#xff0c;确保船舶内部…

深入浅出分布式缓存:原理与应用

文章目录 概述缓存分片算法1. Hash算法2. 一致性Hash算法3. 应用场景Redis集群方案1. Redis 集群方案原理2. Redis 集群方案的优势3. Java 代码示例:Redis 集群数据定位Redis 集群中的节点通信机制:Gossip 协议Redis 集群的节点通信:Gossip 协议Redis 集群的节点通信流程Red…

麒麟部署一套NFS服务器,用于创建网络文件系统

一、服务端共享目录 在本例中,kyserver01(172.16.200.10)作为客户端,创建一个目录/testdir并挂载共享目录;kyserver02(172.16.200.11)作为服务端,创建一个共享目录/test,设置为读写权限,要求客户端使用root登录时映射为nobody用户、非root登录时保持不变。 服务端启…

美国AWS EC2 ubuntu 使用密码登陆

1。使用页面登录ec2 2.切换root用户 sudo -i 3.为root用户或者其它用户配置密码 passwd user passwd root 4.修改下面文件的配置vi /etc/ssh/sshd_config PermitRootLogin和PasswordAuthentication 修改为yes 第五步&#xff1a;进入/etc/ssh/sshd_config.d目录&#xff0c;…

PHP 高并发解决方案

PHP作为一种脚本语言&#xff0c;在处理高并发请求时可能面临一些挑战。但通过合理的设计和优化&#xff0c;可以有效提升PHP应用程序的性能和并发处理的能力。 一、缓存 页面缓存&#xff1a;将生成的页面缓存起来&#xff0c;减少对数据库的查询&#xff0c;提高响应速度。…

圣诞节秘诀

&#x1f570;️你想在2024年圣诞节脱颖而出吗&#xff1f;利用我们的数据洞察&#xff0c;发现今年最受欢迎的礼物&#xff01;无论是在亚马逊、速卖通、Shopify还是直销平台上&#xff0c;我们的排行榜都将帮助您找到最畅销和最受欢迎的产品。立即优化您的库存&#xff0c;以…

Unreal从入门到精通之如何绘制用于VR的3DUI交互的手柄射线

文章目录 前言实现方式MenuLaser实现步骤1.Laser和Cursor2.移植函数3.启动逻辑4.检测射线和UI的碰撞5.激活手柄射线6.更新手柄射线位置7.隐藏手柄射线8.添加手柄的Trigger监听完整节点如下:效果图前言 之前我写过一篇文章《Unreal5从入门到精通之如何在VR中使用3DUI》,其中讲…

JDK1.8中JVM堆内存等参数配置

在JDK 8中&#xff0c;JVM内存模型主要包括堆内存&#xff08;Heap Memory&#xff09;、元空间&#xff08;Metaspace&#xff09;以及直接内存&#xff08;Direct Memory&#xff09;。以下是一些常用的JVM内存参数配置建议&#xff0c;特别是在JDK 8环境下&#xff1a; 1. …

2024 APMCM亚太数学建模C题 - 宠物行业及相关产业的发展分析和策略 完整参考论文(2)

5.2 问题一模型的建立与求解 5.2.1 分析发展情况 为了更好地理解数据的变化趋势,利用matlab通过六个子图对宠物行业中的关键变量进行了可视化展示。 图 1. 宠物数量变化展示了 猫数量、狗数量 和 总宠物数量 在 2019-2023 年间的变化趋势。结果显示:猫的数量呈逐年上升的趋…

堆外内存泄露排查经历

优质博文&#xff1a;IT-BLOG-CN 一、问题描述 淘宝后台应用从今年某个时间开始docker oom的量突然变多&#xff0c;确定为堆外内存泄露。 后面继续按照上一篇对外内存分析方法的进行排查(jemalloc、pmap、mallocpmap/mapsNMTjstackgdb)&#xff0c;但都没有定位到问题。至于…