LLM - 计算 多模态大语言模型 的参数量(Qwen2-VL、Llama-3.1) 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/143749468

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


Img

影响 (多模态)大语言模型 参数量的主要网络模块,即 Linear、Embedding、Norm(LayerNorm or RMSNorm) 等 3 个部分,其中,多模态大模型还包括 Conv3D,手动计算参数量,与 PyTorch 直接计算保持一致。

PyTorch 源码:

def count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)

Qwen2-VL-7B-InstructQwen2-7B-InstructLlama-3.1-8B-Instruct 为例。

网络结构参数量:

  • Linear:参数矩阵,或者加上biasLinear(in_features=w, out_features=h, bias=True) 参数量是 x=w*h+h,当 bias=False, 则是 x=w*h
  • Embedding:认为是没有 bias 的 Linear。
  • Norm:
    • LayerNorm 包括 2 个可训练参数 γ \gamma γ β \beta β,假设 hidden_size 的大小为 h,hidden_size 每一维都有两个参数,即 2*hidden_size
    • RMSNorm 每 1 维则只有 1 个可训练参数 , 即 hidden_size
  • Conv3D:即 Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False),即参数量=输入维度*输出维度*卷积核3*1280*2*14*14=1505280
  • RotaryEmbedding、Activition 和 Dropout:旋转位置编码、激活函数、Dropout 都没有可训练参数

Llama-3.1-8B-Instruct 参数量:

128256 ∗ 4096 + 32 ∗ ( 4096 ∗ 4096 ∗ 2 + 4096 ∗ 1024 ∗ 2 + 4096 ∗ 14336 ∗ 3 + 2 ∗ 4096 ) + 4096 + 4096 ∗ 128256 = 8030261248 = 8 B 128256*4096 + 32*(4096*4096*2 + 4096*1024*2 + 4096*14336*3 + 2*4096) + 4096 + 4096*128256 = 8030261248 = 8B 1282564096+32(409640962+409610242+4096143363+24096)+4096+4096128256=8030261248=8B

即:

P a r a m e t e r s = E m b e d d i n g + l a y e r s ∗ ( L i n e a r Q K V O + L i n e a r m l p + R M S N o r m ) + R M S N o r m + L i n e a r Parameters = Embedding + layers*(Linear_{QKVO} + Linear_{mlp}+RMSNorm) + RMSNorm + Linear Parameters=Embedding+layers(LinearQKVO+Linearmlp+RMSNorm)+RMSNorm+Linear

计算参数量:[Info] parameters: 8030261248

大语言模型 Llama-3.1-8B-Instruct 的网络结构:

LlamaForCausalLM((model): LlamaModel((embed_tokens): Embedding(128256, 4096)(layers): ModuleList((0-31): 32 x LlamaDecoderLayer((self_attn): LlamaSdpaAttention((q_proj): Linear(in_features=4096, out_features=4096, bias=False)(k_proj): Linear(in_features=4096, out_features=1024, bias=False)(v_proj): Linear(in_features=4096, out_features=1024, bias=False)(o_proj): Linear(in_features=4096, out_features=4096, bias=False)(rotary_emb): LlamaRotaryEmbedding())(mlp): LlamaMLP((gate_proj): Linear(in_features=4096, out_features=14336, bias=False)(up_proj): Linear(in_features=4096, out_features=14336, bias=False)(down_proj): Linear(in_features=14336, out_features=4096, bias=False)(act_fn): SiLU())(input_layernorm): LlamaRMSNorm((4096,), eps=1e-05)(post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-05)))(norm): LlamaRMSNorm((4096,), eps=1e-05)(rotary_emb): LlamaRotaryEmbedding())(lm_head): Linear(in_features=4096, out_features=128256, bias=False)
)

多模态视觉大模型 Qwen2-VL-7B-Instruct 的网络结构:

Qwen2VLForConditionalGeneration((visual): Qwen2VisionTransformerPretrainedModel((patch_embed): PatchEmbed((proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False))(rotary_pos_emb): VisionRotaryEmbedding()(blocks): ModuleList((0-31): 32 x Qwen2VLVisionBlock((norm1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)(norm2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)(attn): VisionSdpaAttention((qkv): Linear(in_features=1280, out_features=3840, bias=True)(proj): Linear(in_features=1280, out_features=1280, bias=True))(mlp): VisionMlp((fc1): Linear(in_features=1280, out_features=5120, bias=True)(act): QuickGELUActivation()(fc2): Linear(in_features=5120, out_features=1280, bias=True))))(merger): PatchMerger((ln_q): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)(mlp): Sequential((0): Linear(in_features=5120, out_features=5120, bias=True)(1): GELU(approximate='none')(2): Linear(in_features=5120, out_features=3584, bias=True))))(model): Qwen2VLModel((embed_tokens): Embedding(152064, 3584)(layers): ModuleList((0-27): 28 x Qwen2VLDecoderLayer((self_attn): Qwen2VLSdpaAttention((q_proj): Linear(in_features=3584, out_features=3584, bias=True)(k_proj): Linear(in_features=3584, out_features=512, bias=True)(v_proj): Linear(in_features=3584, out_features=512, bias=True)(o_proj): Linear(in_features=3584, out_features=3584, bias=False)(rotary_emb): Qwen2VLRotaryEmbedding())(mlp): Qwen2MLP((gate_proj): Linear(in_features=3584, out_features=18944, bias=False)(up_proj): Linear(in_features=3584, out_features=18944, bias=False)(down_proj): Linear(in_features=18944, out_features=3584, bias=False)(act_fn): SiLU())(input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06)(post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06)))(norm): Qwen2RMSNorm((3584,), eps=1e-06)(rotary_emb): Qwen2VLRotaryEmbedding())(lm_head): Linear(in_features=3584, out_features=152064, bias=False)
)

总参数量:[Info] parameters: 8291375616

  • 视觉模型的参数量:[Info] parameters model.visual: 675759104
  • 语言模型的参数量:[Info] parameters model.model: 7070619136 + [Info] parameters model.lm_head: 544997376

即:675759104(8.15%) + 7070619136(85.28%) + 544997376(6.57%) = 8291375616 = 8B

Qwen2-VL-7B-InstructQwen2VisionTransformerPretrainedModel 参数量:

  • patch_embed 参数量: 3*1280*2*14*14=1505280
  • blocks 参数量:[Info] parameters model.visual.blocks: 629678080
    • 详细计算公式:32*(1280*2*2 + (1280+1)*3840 + (1280+1)*1280 + 1280*5121 + 5120*1281)=629678080
  • merger 参数量:

合并计算公式:

3 ∗ 1280 ∗ 2 ∗ 14 ∗ 14 + 32 ∗ ( 1280 ∗ 2 ∗ 2 + ( 1280 + 1 ) ∗ 3840 + ( 1280 + 1 ) ∗ 1280 + 1280 ∗ 5121 + 5120 ∗ 1281 ) + 1280 ∗ 2 + 5120 ∗ 5121 + ( 5120 + 1 ) ∗ 3584 = 675759104 3*1280*2*14*14 + 32*(1280*2*2 + (1280+1)*3840 + (1280+1)*1280 + 1280*5121 + 5120*1281) + 1280*2 + 5120*5121 + (5120+1)*3584 \\ = 675759104 3128021414+32(128022+(1280+1)3840+(1280+1)1280+12805121+51201281)+12802+51205121+(5120+1)3584=675759104

Qwen2-VL-7B-InstructQwen2VLModel 参数量:

152064 ∗ 3584 + 28 ∗ ( ( 3584 + 1 ) ∗ 3584 + ( 3584 + 1 ) ∗ 512 ∗ 2 + 3584 ∗ 3584 + 3584 ∗ 18944 ∗ 3 + 2 ∗ 3584 ) + 3584 = 7070619136 3584 ∗ 152064 = 544997376 152064*3584 + 28*((3584+1)*3584 + (3584+1)*512*2 + 3584*3584 + 3584*18944*3 + 2*3584) + 3584 \\ = 7070619136 \\ 3584 * 152064 = 544997376 1520643584+28((3584+1)3584+(3584+1)5122+35843584+3584189443+23584)+3584=70706191363584152064=544997376

因此,Qwen2-VL-7B 的数据量完全对齐。

测试:

# 预训练模型, 查看其词表大小
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessorprint(f"[Info] transformers version: {transformers.__version__}")def count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)# ------------ Qwen2-VL-7B ----------- #
model_path = "[your path]/llm/Qwen/Qwen2-VL-7B-Instruct"
print(f"[Info] model_path: {model_path}")# Load the model in half-precision on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_path)
configuration = model.config
print(f"[Info] Qwen2-VL-7B vocab_size: {configuration.vocab_size}")
print(model)
print(f"[Info] parameters: {count_parameters(model)}")
print(f"[Info] parameters model.visual: {count_parameters(model.visual)}")
print(f"[Info] parameters model.model: {count_parameters(model.model)}")
print(f"[Info] parameters model.lm_head: {count_parameters(model.lm_head)}")
print(f"[Info] parameters model.visual.patch_embed: {count_parameters(model.visual.patch_embed)}")
print(f"[Info] parameters model.visual.blocks: {count_parameters(model.visual.blocks)}")
print(f"[Info] parameters model.visual.blocks[0].norm1: {count_parameters(model.visual.blocks[0].norm1)}")
print(f"[Info] parameters model.visual.blocks[0].norm2: {count_parameters(model.visual.blocks[0].norm2)}")
print(f"[Info] parameters model.visual.blocks[0].attn: {count_parameters(model.visual.blocks[0].attn)}")
print(f"[Info] parameters model.visual.blocks[0].mlp: {count_parameters(model.visual.blocks[0].mlp)}")
# ------------ Qwen2-VL-7B ----------- ## ------------ Qwen2-7B ----------- #
model_path = "[your path]/llm/Qwen/Qwen2-7B-Instruct"
print(f"[Info] model_path: {model_path}")device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
print(f"[Info] Qwen2-7B vocab_size: {tokenizer.vocab_size}")
print(model)
print(f"[Info] parameters: {count_parameters(model)}")
# ------------ Qwen2-7B ----------- ## ------------ Llama-3.1-8B ----------- #
model_path = "[your path]/llm/Meta-Llama-3.1-8B-Instruct"
print(f"[Info] model_path: {model_path}")
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16,device_map="auto",
)
print(f"[Info] Llama-3.1-8B vocab_size: {tokenizer.vocab_size}")
print(model)
print(f"[Info] parameters: {count_parameters(model)}")
# ------------ Llama-3.1-8B ----------- #

Qwen2-7B 的参数量是 7615616512,即 7070619136 + 544997376 = 7615616512

参考:

  • 大模型的参数量是如何计算的
  • 大模型参数量如何计算
  • 如何根据模型结构,计算大模型的参数量?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/61246.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Java Springboot成都旅游网

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 数据…

css 使用图片作为元素边框

先看原始图片 再看效果 边框的四个角灭有拉伸变形,但是图片的中部是拉伸的 代码 border-style: solid;/* 设置边框图像的来源 */border-image-source: url(/static/images/mmwz/index/bk_hd3x.png);/* 设置如何切割图像 */border-image-slice: 66;/* 设置边框的宽度 */border…

【阅读记录-章节1】Build a Large Language Model (From Scratch)

目录 1. Understanding large language models1.1 What is an LLM?补充介绍人工智能、机器学习和深度学习的关系机器学习 vs 深度学习传统机器学习 vs 深度学习(以垃圾邮件分类为例) 1.2 Applications of LLMs1.3 Stages of building and using LLMs1.4…

【WSL+Ubuntu】默认用户被意外变更为 root 后切回原来的默认用户

引言 在使用 Windows Subsystem for Linux (WSL) Ubuntu 时,在 ~ 目录下使用 ls 命令,发现所有文件都消失了,让我误以为文件被清空了。实际上是因为WSL Ubuntu的默认用户被意外地改变为了 root。那么,如何恢复并切回原来的默认用…

Cookie 与 Session:差异剖析与应用实战

一、引言 在 JavaWeb 开发领域,Cookie 和 Session 是用于跟踪用户状态和在不同页面间传递信息的重要机制。它们在实现用户登录状态保持、个性化推荐、购物车功能等方面发挥着关键作用,但二者在工作原理、存储位置、生命周期等方面存在明显区别。深入理解…

Java策略模式应用实战

Java策略模式应用实战 推送内容并预检 import java.lang.reflect.Field; import java.util.HashMap; import java.util.Map; import java.util.Objects; import java.util.logging.Level; import java.util.logging.Logger;// DTO class class DataDTO {private String type;…

36.矩阵格式的等差数列 C语言

第一行&#xff0c;每个数差2&#xff0c;之后是3、4、5&#xff0c;最后一行是10 仅仅是练习目的 #define _CRT_SECURE_NO_WARNINGS // 禁用在 Visual Studio 中有关不安全函数的警告 #include <stdio.h> // 引入标准输入输出库int main() {int i; // 外层循环的变量…

深入剖析:Java 中 @RequestBody 注解的正确使用

在 Spring Web 开发中&#xff0c;RequestBody 是一个常见而又强大的注解。它能够帮助我们轻松地将 HTTP 请求体中的 JSON 数据转换为 Java 对象&#xff0c;从而减少了繁琐的手工解析操作。但看似简单的注解&#xff0c;背后却隐藏着一些坑点和细节。今天&#xff0c;我们将深…

OPC UA 服务器

OPC UA&#xff08;OPC Unified Architecture&#xff09; 是一种平台无关的通信协议&#xff0c;广泛用于工业自动化领域。它由 OPC 基金会开发&#xff0c;主要设计目标是实现安全、可靠和互操作性的数据交换&#xff0c;适用于各种设备和系统之间的通信。 什么是 OPC UA 服务…

模式:每个服务一个数据库

Pattern: Database per service。 背景 如用微服务架构模式开发一个在线商店应用程序。大多数服务需要在某种数据库中持久化数据。如&#xff0c;订单服务存储订单信息&#xff0c;而客户服务存储客户信息。 问题 微服务应用程序中的数据库架构是什么&#xff1f; 驱动力…

<websocket><PLC>使用js和html实现webscoket,与PLC进行socket通讯的实例

前言 本文是为了实现从网页端通过websocket与PLC端的socket进行数据通讯。 环境配置 系统:windows 平台:visual studio code 语言:javascript、html、PLC 库:node.js 概述 本文的目的是通过网页端与PLC进行socket通讯,但web端一般并不是直接使用socket,而是websocket,…

Acme PHP - Let‘s Encrypt

Lets Encrypt是一个于2015年三季度推出的数字证书认证机构&#xff0c;旨在以自动化流程消除手动创建和安装证书的复杂流程&#xff0c;并推广使万维网服务器的加密连接无所不在&#xff0c;为安全网站提供免费的SSL/TLS证书。 使用PHP来更新证书&#xff1a; Acme PHP | Rob…

高效管理 SSH 免密码登录:多客户端与多服务器实践指南20241118

高效管理 SSH 免密码登录&#xff1a;多客户端与多服务器实践指南 引言 在日常开发中&#xff0c;安全高效地管理多个客户端与服务器之间的 SSH 连接是一个常见需求。尤其对于运维工程师和开发者&#xff0c;避免频繁输入密码并保障安全性是实现高效工作的关键。本文结合实际案…

如何实现主备租户的无缝切换 | OceanBase应用实践

对于DBA而言&#xff0c;确保数据库的高可用性、容灾等能力是其日常工作中需要持续思考和关注的重要事项。一方面&#xff0c;可以利用数据库自身所具备的功能来实现这些目标&#xff1b;若数据库本身不提供相应功能&#xff0c;DBA则需寻找其他工具来增强数据库的高可用性和容…

正在执行例行维护 请一分钟后回来

WordPress网站出现“正在执行例行维护&#xff0c;请一分钟后回来。”的情况通常是因为网站进入了维护模式。以下是一些可能导致这种情况的原因和相应的解决方案&#xff1a; 1. 更新过程中的维护模式&#xff1a; 当WordPress在更新核心文件、插件或主题时&#xff0c;会自动…

后端-Result.java工具类和SystemCode.java工具类

一.Result.java工具类 package com.hs.util; /** * 响应格式类 * 作用&#xff1a;统一服务端的响应数据格式 */ public class Result<T> { /** * 响应代码 */ private int status; /** * 响应信息 */ private String message;…

超越GPT-4o-mini | 北大开源「国产o1」大模型,{多阶段自主推理}让小模型也能“放大招“!

01、LLaVA-o1背景简介 以OpenAI o1为代表的大型语言模型展示了强大的推理能力&#xff0c;这充分的验证了语言模型推理时间缩放的有效性。然而&#xff0c;视觉对于使模型能够充分理解世界并扩展其认知能力同等重要。因此&#xff0c;开发一个融合语言和视觉的多模态模型&#…

大模型微调lama-factory

简介 LLaMA-Factory是一个强大的工具&#xff0c;用于微调大型语言模型。本文将介绍如何使用LLaMA-Factory进行模型微调的简单操作流程&#xff0c;并提供代码记录。 操作流程 环境搭建 首先&#xff0c;需要克隆LLaMA-Factory仓库并安装必要的库&#xff1a; bash !git clo…

Unity类银河战士恶魔城学习总结(P126 Item ToolTip物品提示)

【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili 教程源地址&#xff1a;https://www.udemy.com/course/2d-rpg-alexdev/ 本章节实现了把鼠标放到物品上面就会显示物品属性 UI_ItemTooltip.cs 功能实现&#xff1a;该脚本的核心功能是展示和隐藏物品的工具提示…

网络卡绑定详解:提升网络性能与冗余的最佳实践

文章目录 网络卡绑定详解&#xff1a;提升网络性能与冗余的最佳实践引言网络卡绑定优势应用场景 网络卡绑定的工作原理常见绑定模式平衡负载模式&#xff08;mode0&#xff09;自动备援模式&#xff08;mode1&#xff09;XOR模式&#xff08;mode2&#xff09;动态链路聚合&…