go函数传值是值传递?还是引用传递?slice案例加图解

先说下结论

Go语言中所有的传参都是值传递(传值),都是一个副本,一个拷贝。

  • 值语义类型:参数传递的时候,就是值拷贝,这样就在函数中就无法修改原内容数据。

    • 基本类型:byte、int、bool、float32、float64、string等;
    • 复合类型:array、struct和指针等
  • 引用语义类型:参数传递的时候,也是值拷贝,不过是这样就可以修改原内容数据。

    • map、slice、chan和接口

引用类型值传递图解

下图以 slice 为例,说明引用类型的变量作为实参传递给函数形参时是值传递(拷贝):

在这里插入图片描述

在Go语言里,虽然只有传值,但是我们也可以修改原内容数据,因为参数是引用类型,在函数传递引用类型的变量时,会如上图进行值拷贝,拷贝的数据里有引用变量引用的数据的地址。

值语义类型的参数传递

package mainimport "fmt"func main() {var by byte = 123var i int64 = 10var boolean bool = falsevar f32 float32 = 3.14var f64 float64 = 3.1415926var str string = "hello world"fmt.Printf("mian 函数中的变量 by 的内存地址是 %p\n", &by)fmt.Printf("mian 函数中的变量 i 的内存地址是 %p\n", &i)fmt.Printf("mian 函数中的变量 boolean 的内存地址是 %p\n", &boolean)fmt.Printf("mian 函数中的变量 f32 的内存地址是 %p\n", &f32)fmt.Printf("mian 函数中的变量 f64 的内存地址是 %p\n", &f64)fmt.Printf("mian 函数中的变量 str 的内存地址是 %p\n", &str)fmt.Println("=======================函数调用前=============")callByValue(by, i, boolean, f32, f64, str)fmt.Println("=======================函数调用后=============")fmt.Printf("被调函数中修改形参的值,main 函数中打印结果为(不变): %v\n", by)fmt.Printf("被调函数中打印结果为:%v\n", i)fmt.Printf("被调函数中打印结果为:%v\n", boolean)fmt.Printf("被调函数中打印结果为:%v\n", f32)fmt.Printf("被调函数中打印结果为:%v\n", f64)fmt.Printf("被调函数中打印结果为:%v\n", str)
}func callByValue(by byte, i int64, boolean bool, f32 float32, f64 float64, str string) {fmt.Printf("被调函数中,形参的 by 内存地址是:%p\n", &by)fmt.Printf("被调函数中,形参的 i 内存地址是:%p\n", &i)fmt.Printf("被调函数中,形参的 boolean 内存地址是:%p\n", &boolean)fmt.Printf("被调函数中,形参的 f32 内存地址是:%p\n", &f32)fmt.Printf("被调函数中,形参的 f64 内存地址是:%p\n", &f64)fmt.Printf("被调函数中,形参的 str 内存地址是:%p\n", &str)by = 10i = 20boolean = truef32 = 13.14f64 = 13.146666str = "hello golang"
}
mian 函数中的变量 by 的内存地址是 0xc00010200a , 值为: 123
mian 函数中的变量 i 的内存地址是 0xc000102020 , 值为: 10
mian 函数中的变量 boolean 的内存地址是 0xc000102028 , 值为: false
mian 函数中的变量 f32 的内存地址是 0xc00010202c , 值为: 3.14
mian 函数中的变量 f64 的内存地址是 0xc000102030 , 值为: 3.1415926
mian 函数中的变量 str 的内存地址是 0xc000104140 , 值为: hello world
=======================函数调用前=============
被调函数中,形参的 by 内存地址是:0xc000102048 ,值为:123 
被调函数中,形参的 i 内存地址是:0xc000102050 ,值为:10 
被调函数中,形参的 boolean 内存地址是:0xc000102058 ,值为:false 
被调函数中,形参的 f32 内存地址是:0xc00010205c ,值为:3.14 
被调函数中,形参的 f64 内存地址是:0xc000102060 ,值为:3.1415926 
被调函数中,形参的 str 内存地址是:0xc000104160 ,值为:hello world 
=======================函数内部修改值=============
=======================函数调用后=============
被调函数中修改形参的值,main 函数中打印结果为(不变): 123
被调函数中打印结果为:10
被调函数中打印结果为:false
被调函数中打印结果为:3.14
被调函数中打印结果为:3.1415926
被调函数中打印结果为:hello world

从日志中可以发现:main 函数实参的地址和被调函数callByValue中形参的地址不同,在被调函数中修改形参的值并不会 影响实参变量的值。

指针类型

形参和实际参数内存地址不一样,证明是值传递。由于形参和实参是指针类型,指向同一个变量,函数内对指针指向变量的修改,会修改原内容数据。

package mainimport "fmt"func main() {var i int64 = 1fmt.Printf("main 函数中 i 内存地址是 %p\n", &i)     //0xc000104020 ip := &icallByPointer(ip)fmt.Printf("改动后的值是: %v\n", i)
}func callByPointer(ip *int64) { //这里定义的args就是形式参数fmt.Printf("callByPointer形参的内存地址是:%p\n", &ip) //0xc000108068fmt.Printf("callByPointer形参的值是:%p\n", ip)       //0xc000104020*ip = 10 //解引用
}
main 函数中 i 内存地址是 0xc000104020 
callByPointer形参的内存地址是:0xc000108068
callByPointer形参的值是:0xc000104020
改动后的值是: 10

引用语义类型变量的参数传递

package mainimport "fmt"func main() {//切片var s = make([]int64, 5, 10)s[0] = 1s[1] = 2s[2] = 3s[3] = 4s[4] = 5fmt.Printf("原始切片 len %v ,cap %v", len(s), cap(s))var p = &sfmt.Printf("原始切片   取地址(&s):%p ; \n直接对原始切片取地址( p):%p \n", &s, p)fmt.Printf("原始切片   底层数组的内存地址(s):     %p  \n原始切片   第一个元素的内存地址(&s[0]): %p\n", s, &s[0])callBySliceParam(s)fmt.Printf("改动后的值是: %v\n", s)
}func callBySliceParam(s1 []int64) {fmt.Printf("函数里,函数参数(切片)取地址 %p\n", &s1)fmt.Printf("函数里,函数参数(切片)的底层数组的内存地址是 %p \n", s1)fmt.Printf("函数里,函数参数(切片)第一个元素的内存地址: %p \n", &s1[0])s1[0] = 10
}
原始切片 len 5 ,cap 10原始切片   取地址(&s):0xc0001120a8 ; 
直接对原始切片取地址( p):0xc0001120a8 
原始切片   底层数组的内存地址(s):     0xc00012c000  
原始切片   第一个元素的内存地址(&s[0]): 0xc00012c000
函数里,函数参数(切片)取地址 0xc0001120d8
函数里,函数参数(切片)的底层数组的内存地址是 0xc00012c000 
函数里,函数参数(切片)第一个元素的内存地址: 0xc00012c000 
改动后的值是: [10 2 3 4 5]

通过输出日志,可以清楚地看到切片作为引用类型的特点:传递切片时,实际上是传递了切片的副本,但这个副本仍然指向同一个底层数组。因此,对切片的修改会影响到原始切片。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/60194.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UDP checksum(UDP校验和)

UDP校验和(UDP checksum)是一种用于检测传输中的UDP数据包在传输过程中是否发生错误的机制。UDP(用户数据报协议)是一种简单的无连接的传输层协议,它用于在网络中发送数据包,但不提供数据包的传输可靠性或顺…

使用pycharm调试程序——完全显示张量的数值

我在使用PyCharm调试程序时,发现有些张量因为shape过大(数据量太多),导致该张量中的数值无法完全显示。下面就简单介绍怎样完全显示张量中的数值。 假设某个张量 inp_voxel 的 shape 为 torch.Size([5, 128, 128]),如…

MYSQL隔离性原理——MVCC

表的隐藏字段 表的列包含用户自定义的列和由系统自动创建的隐藏字段。我们介绍3个隐藏字段,不理解也没有关系,理解后面的undo log就懂了: DB_TRX_ID :6 byte,最近修改( 修改/插入 )事务ID,记录创建这条记…

strtok函数详解

strtok函数 strtok 函数是一个字符串分割函数,用于将字符串分割成一系列的标记。这个函数通过一组分隔符字符来确定标记的边界,每次调用都会返回字符串中的下一个标记,并且将原始字符串中的分隔符替换为空字符‘\0’,从而实际上是…

NewStar CTF 2024 misc WP

decompress 压缩包套娃,一直解到最后一层,将文件提取出来 提示给出了一个正则,按照正则爆破密码,一共五位,第四位是数字 ^([a-z]){3}\d[a-z]$ 一共就五位数,直接ARCHPR爆破,得到密码 xtr4m&…

Git介绍以及SSH配置

目录 1. Git介绍 1.1 Git的基本原理 1.2 Git的主要功能 1.3 Git的优点 1.4 Git的缺点 2. Git安装 3. SSH配置 1. Git介绍 Git是一款功能强大的分布式版本控制系统,最初由Linux操作系统的开发者Linus Torvalds在2005年开发,用于管理Linux内核的源代…

PH热榜 | 2024-11-09

DevNow 是一个精简的开源技术博客项目模版,支持 Vercel 一键部署,支持评论、搜索等功能,欢迎大家体验。 在线预览 1. Shootmail 标语:像Notion一样,可以创建漂亮邮件模板和邮件内容的工具。 介绍:想象一下…

嵌入式学习第21天Linux基础

目录 第1章 Linux 系统介绍 1.1 Unix 操作系统(了解) 1.2 Linux 操作系统(了解) 1.3 Linux 操作系统的主要特性(重点) 1.4 Linux 与 Unix 的区别与联系 1.5 GUN 与 GPL(了解) …

【小程序安全】小程序反编译

❤️博客主页: iknow181 🔥系列专栏: 网络安全、 Python、JavaSE、JavaWeb、CCNP 🎉欢迎大家点赞👍收藏⭐评论✍ 0x01 前期准备 知识点准备-小程序结构 1.主体结构 小程序包含一个描述整体程序的 app 和多个描述各自页…

C++ : STL容器(适配器)之stack、queue剖析

STL容器适配器之stack、queue剖析 一、stack、queue的接口(一)stack 接口说明(二)queue 接口说明 二、stack、queue的模拟实现(一)stack、queue是容器适配器stack、queue底层默认容器--deque1、deque概念及…

Kubernetes的基本构建块和最小可调度单元pod-0

文章目录 一,什么是pod1.1pod在k8s中使用方法(1)使用方法一(2)使用方法二 1.2pod中容器的进程1.3pod的网络隔离管理(1)pause容器的作用 1.4 Pod分类:(1)自主式…

【CUDA】认识CUDA

目录 一、CUDA编程 二、第一个CUDA程序 三、CUDA关键字 四、device管理 4.1 初始化 4.2 Runtime API查询GPU信息 4.3 决定最佳GPU CUDA C 编程指南CUDA C在线文档:CUDA C 编程指南 CUDA是并行计算的平台和类C编程模型,能很容易的实现并行算法。只…

知识中台如何在精简供应链管理中发挥作用?

您如何与供应商沟通并分享您的最佳实践?您如何确保供应商了解您的基准?如果您正在为这些问题烦恼,请不要担心,本文章将为您提供宝贵的见解。 构建具备弹性的供应链模型,其关键在于知识中台的数据质量。若缺乏数据支撑…

Python 在PDF中绘制形状(线条、矩形、椭圆形等)

在PDF中绘制图形可以增强文档的视觉效果。通过添加不同类型的形状,如实线、虚线、矩形、圆形等,可以使文档更加生动有趣,提高读者的阅读兴趣。这对于制作报告、演示文稿或是教材特别有用。本文将通过以下几个示例介绍如何使用Python 在PDF中绘…

Gitlab-执行器为Kubetnetes时的注意事项,解决DNS解析问题

一、Gitlab-Runner 这里对于Runner的理解非常重要。 具体执行ci流水线的叫执行器。执行器可以部署是shell、docker、k8s的pod.执行完任务则生命周期结束。 管理执行器的叫Gitlab-Runner。Runner则是与Gitlab Server的Ci agent.(可以简单这么理解) 二、执行器为Kubetnetes时,DN…

大数据新视界 -- 大数据大厂之 Impala 性能优化:新技术融合的无限可能(下)(12/30)

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

讨论一个mysql事务问题

最近在阅读一篇关于隔离级别的文章,文章中提到了一种场景,我们下面来分析一下。 文章目录 1、实验环境2、两个实验的语句执行顺序3、关于start transaction和start transaction with consistent snapshot4、实验结果解释4.1、实验14.2、实验24.3、调整实…

json绘制热力图

首先需要一段热力信息的json,我放在头部了。 然后就是需要de-geo库了。 实现代码如下: import * as d3geo from d3-geoimport trafficJSON from ../assets/json/traffic.jsonlet geoFun;// 地理投影函数// let info {max: Number.MIN_SAFE_INTEGER,mi…

K8S之Prometheus 部署(二十)

部署方式:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus 源码目录:kubernetes/cluster/addons/prometheus 服务发现:https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kube…

kafka中节点如何服役和退役

服役新节点 1)新节点准备 (1)关闭 bigdata03,进行一个快照,并右键执行克隆操作。 (2)开启 bigdata04,并修改 IP 地址。 vi /etc/sysconfig/network-scripts/ifcfg-ens33修改完记…