(蓝桥杯C/C++)——基础算法(下)

目录

一、时空复杂度

1.时间复杂度

2.空间复杂度

3.分析技巧

4.代码示例

二、递归

1.递归的介绍

2.递归如何实现

3.递归和循环的比较

4.代码示例

三、差分

1.差分的原理和特点

2.差分的实现

3.例题讲解

四、枚举

1.枚举算法介绍

2.解空间的类型

3. 循环枚举解空间

4.例题讲解

五、前缀和

1.前缀和原理和特点

2.实现前缀和

3.代码示例

六、离散化

1.离散化简介

2.离散化的实现方法

4.代码示例


一、时空复杂度

1.时间复杂度

(1)时间复杂度是衡量算法执行时间随输入规模增长的增长率。
(2)通过分析算法中基本操作的执行次数来确定时间复杂度。
(3)常见的时间复杂度包括:常数时间 0(1)、线性时间 O(n)、对数时间 O(logn)、平方时间O(n^2)等。
(4)在计算的时候我们关注的是复杂度的数量级,并不要求严格的表达式。

一般我们关注的是最坏时间复杂度,用O(f(n))表示,大多数时候我们仅需估算即可-般来说,评测机1秒大约可以跑2e8次运算,我们要尽可能地让我们的程序运算规模级控制在1e8以内。

2.空间复杂度


(1)空间复杂度是衡量算法执行过程中所需的存储空间随输入规模增长的增长率。
(2)通过分析算法中所使用的额外存储空间的大小来确定空间复杂度。
(3)常见的空间复杂度包括:常数空间 0(1)、线性空间 0(n)、对数空间 0(logn)、平方空间0(n^2)等。

一般我们关注的是最坏空间复杂度,用O(f(n))表示,大多数时候程序占用的空间一般可以据开的数组大小精确算出,但也存在需要估算的情况。题目一般不会卡空间,一般是卡时1举个例子,假如题目限制128MB,1int~32bit~4Bytes,128MB~32*2^20int~3e7int

3.分析技巧

1.理解基本操作:基本操作可以是算术运算(加法、乘法、位运算等)、比较操作、赋值操作等。

2.关注循环结构:循环是算法中常见的结构,它的执行次数对于时间复杂度的分析至关重要

3.递归算法:递归算法的时间和空间复杂度分析相对复杂。需要确定递归的深度以及每个归调用的时间和空间开销。

4.最坏情况分析:对于时间复杂度的分析,通常考虑最坏情况下的执行时间。要考虑输入数据使得算法执行时间达到最大值的情况。

5.善用结论:某些常见算法的时间和空间复杂度已经被广泛研究和证明。可以利用这些已知结果来分析算法的复杂度。


4.代码示例

时间复杂度:O(n)该算法使用迭代的方式计算斐波那契数列的第n个数,循环遍历n次,因此时间复杂度与n成正比。

//斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)

空间复杂度:O(1)算法只使用了常数级别的额外空间来存储变量,不随输入规模变化。

#include <iostream>

usinp namespace std;
int fibonacci(int n)

{
      if(n←1)
         return n;


             int prev1 = 0:
             int prev2 = 1;
             int fib = 0;

            for (int i =2;i <= n ;i++)

           {     

                   fib = prev1 =  prev2;

                   prev1 = prev2;

                    prev2 = fib;

          }
          return fib;

}
int main()

{
       int n;
       cout  <<  "Enter the position: ";
       cin >> n;

       int result = fibonacci(n);
        cout << "Fibcnacci number at position " << n << " : "<< result <<endl;

return 0;

}

二、递归

1.递归的介绍

概念:递归是指函数直接或间接调用自身的过程。

解释递归的两个关键要素:

基本情况(递归终止条件):递归函数中的一个条件,当满足该条件时,递归终止,避免无限递归。可以理解为直接解决极小规模问题的方法。
递归表达式(递归调用):递归函数中的语句,用于解决规模更小的子问题,再将子问题的答案合井成为当前问题的答案。

2.递归如何实现

递归函数的基本结构如下:
返回类型 函数名(参数列表)

  {

     //基本情况(递归终止条件)

     if(满足终止条件)

   {

         //返回终止条件下的结果

   }

         //递归表达式(递归调用)

   else

  {

         //将问题分解为规模更小的子问题

         //使用递归调用解决子问题

         // 返回子问题的结果

   }

}

实现过程:

1.将大问题分解为规模更小的子问题。

2.使用递归调用解决每个子问题。

3.通过递归终止条件来结束递归。

设计时需注意的细节:

1.确保递归一定能到递归出口,避免无限递归,这可能导致TLE(超时)、MLE(超内存)或RE(运行错误)。

2.考虑边界条件,有时候递归出口不止一个

3.避免不必要的重复计算,尽可能优化递归函数的性能(例如使用记忆化)。

3.递归和循环的比较

递归的特点:

1.直观、简洁,易于理解和实现。

2.适用于问题的规模可以通过递归调用不断减小的情况。

3.可以处理复杂的数据结构和算法,如树和图的遍历。

4.存在栈溢出风险(栈空间一般只有8MB,所以递归层数不宜过深,一般不超过1e6层)。

循环的特点:

1.直接控制流程,效率较高。

2.适用于问题的规模没有明显的缩减,或者需要特定的选代次数。

3.适合处理大部分的动态规划问题。

在部分情况下,递归和循环可以相互转化。

4.代码示例

斐波那契数列
已知F(1)=F(2)= 1;
n>3时F(n)=F(n-1)+F(n-2)
输入n,求F(n),n<=100000,结果对1e9+7取模。

#include<bits/stdc++.h>
using namespace std;
using ll =  long long;

const int N =  1e5 + 9;

const ll p= 1e9 +7;

ll fib(int n)

{
if( n <=2 )

return 1;

return (fib(n - 1) + fib(n - 2)) % p;
}
int main()

{
int n;

cin >> n;

for(int i = 1 ;i <= n; ++ i)

cout << fib(i) << '\n';

return 0;

}

三、差分

1.差分的原理和特点

对于一个数组a[ ],差分数组diff[]的定义是:
diffi]=a[i]-a[i-1]
对差分数组做前缀和可以还原为原数组:

diff[1]=a[1]

diff[2] = a[2]- a[1]

diff[3]= a[3]-a[2]

diff[n]=a[n]-a|n-1]


  diff[1]+ diff[2]+ diff[3]+...+diff[i]

= a[1] +(a[2]-a [1])+(a[3]- α[2])+...+(a[i]-a[i-1])
= a[i]

利用差分数组可以实现快速的区间修改,下面是将区间[,r]都加上x的方法:
diff[l] += x;

diff[r +1] -= x;


在修改完成后,需要做前缀和恢复为原数组,所以上面这段代码的含义是:
diff[l] += x表示将区间[l,n]都加上x,

但是[r+1,n]我们并不想加x,所以再将[r+1,n]减去x即可。

但是注意,差分数组不能实现“边修改边查询(区间和)”,只能实现“多次修改完次查询”。如果要实现“边修改边查询”需要使用树状数组、线段树等数据结构。

2.差分的实现

直接用循环O(n)实现即可,注意这里建议使得a[0]=0,下标从1开始
for(int i = 1;i <= n; ++ i)

diff[a[i]=a[i]-a[i- 1];

将区间[l,r]都加上x:
diff[l] += x;

diff[r + 1]-= x;

3.例题讲解

小明拥有 N 个彩灯,第i个彩灯的初始亮度为 ai,
小明将进行 Q 次操作,每次操作可选择一段区间,并使区间内彩灯的亮度 + x(x 可能为负数)。
求 Q 次操作后每个彩灯的亮度(若彩灯亮度为负数则输出 0)。

利用差分数组对数组a进行区间修改即可
注意输出时亮度如果为负数则输出0,需要开longlong。

#include<bits/stdc++.h>
using namespace std;
using ll =  long long;

const int N =  1e6 + 3;

ll a[N],d[N];

void solve()

{

  int n,m;

 cin >> n >>m;

  for(int i = 1;i <= n;++i)

  cin >> a[i];

for(int i = 1;i <= n;++i)

  d[i] = a[i] - a[i-1];

while(n --)

{

 intl, r, v,;

 cin >> l >>r >>v;

  d[l] +=v,d[r + 1] -= v;

}

  //前缀和还原

   for(int i = 1;i <= n;++i)

a[i] = a[i-1] + d[i];

     for(int i = 1;i <= n;++i)

cout << max(011, a[i]) << '\n'(i == n);

}

int main()

{

 solve();

 return 0;

}

   

四、枚举

1.枚举算法介绍

枚举算法是一种基本的算法思想,它通过穷举所有可能的情况来解决问题。它的基本思想是将问题的解空间中的每个可能的解都枚举出来,并进行验证和比较,找到满足问题条件的最优解或者所有解。
枚举算法适用于问题规模较小、解空间可穷举的情况。它的优点是简单直观,不需要复杂的数学推导,易于实现。但是,由于需要穷举所有可能的情况,对于问题规模较大的情况,枚举算法的时间复杂度可能会非常高,效率较低。

2.解空间的类型

一个问题的解空间是它的所有可能的解构成的集合

解空间可以是一个范围内的所有数字(或二元组、字符串等数据),或者满足某个条件的所
有数字。
当然也可以是解空间树,一般可分为子集树和排列树,针对解空间树,需要使用回溯法进行
枚举。
我们目前仅使用循环去暴力枚举解空间,具体的解空间类型需要根据题目来理解构造。

3. 循环枚举解空间

1.首先确定解空间的维度,即问题中需要枚举的变量个数。
例如当题目要求的是满足条件的数字时,我们可以循环枚举某个范围内的数字。
如果要求的是满足条件的二元组,我们可以用双重循环分别枚举第一个和第二个变量,从而构造出一个二元组。
2.对于每个变量,确定其可能的取值范围。这些范围可以根据问题的性质和约束条件来确定这一步往往是时间复杂度优化的关键。
3.在循环体内,针对每个可能解进行处理。可以进行问题的验证、计算、输出等操作。


4.例题讲解

题目描述
小明对数位中含有 2、0、1、9的数字很感兴趣(不包括前导 0),在1到 40中这样的数包括1、2、9、10至32、39 和 40,共 28 个,他们的和是 574.
请问,在1到n中,所有这样的数的和是多少?

枚举所有数字(解空间)用一个函数判断某个数字是否是特别的数,将满足条件的数字求和即可。

#include<bits/stdc++.h>
using namespace std;

bool f(int x)

{

  while(x)

    {

      int y = x % 10;

      if(y == 2 || y == 0 || y == 9)

      return  turn;

       x /= 10;

     }

}

int main()

{   

     int n;

     cin >> n;

     int ans = 0;  

         for(int i = 1;i <= n;++i)

     {

       if (f (i))

       ans += i;

      }

   cout << ans<< '\n';

   return 0;

}

五、前缀和

1.前缀和原理和特点


prefix表示前缀和,前缀和由一个用户输入的数组生成。

对于一个数组a[](下标从1开始),我们定义一个前缀和数组prefix,满足:
prefix[i] => \sum_{j-1}^{i-1} a[j]

prefix有一个重要的特性,可以用于快速生成prefix:

prefix[i] = \sum_{j-1}^{i-1} a|j]  + a[i] = prefix |i-1] + a[i]

prefix可以O(1)的求数组a几]的一段区间的和:

sum(l,r) = prefix [r] - prefix [l-1]
但是注意,prefix是一种预处理算法,只适用于a数组为静态数组的情况,即a数组中的元素在区间和查询过程中不会进行修改。
如果需要实现“先区间修改,再区间查询”可以使用差分数组,如果需要“一边修改,一边查询”需要使用树状数组或线段树等数据结构。

2.实现前缀和

利用前面讲过的特性:
prefix[i]= prefix[i - 1] + a[i]
我们的数组下标均从1开始,a[0]=0,从前往后循环计算即可。
for(int i = 1;i <= n; ++ i)

prefix[i]= prefix[i - 1] + a[i];


求区间和:
sum(L, R) = prefix[R]-prefix[L-1]

3.代码示例

问题描述
平衡串指的是一个字符串,其中包含两种不同字符,并且这两种字为的数量相
等。

例如,ababab和aababb都是平衡串,因为每种字符各有三个,而abaab和aaaab 都不是平衡串,因为它们的字符数量不相等。

小郑拿到一个只包含L、Q的字符串,他的任务就是找到最长平衡串,且满足平衡串的要求,即保证子串中L、Q的数量相等。

#include <bits/stdc++.h>

using namespace std;
const int N = 1010;
char s[N];

int prefix[N];

int main()

{

 cin >> s + 1;

  int n = strlen(s + 1);

  for(int i = 1;i <= n;++i)

 prefix[i] =  prefix[i - 1] + (s[i] == 'L' ? 1: -1);

int ans = 0;

  for(int i = 1;i <= n;++i)

     for(int j = i;j <= n;++j)

          if(prefix[j] =  prefix[i - 1] == 0)

        ans = max(ans ,j - i + 1);

cout << ans<< '\n';

return 0;

    }

}

六、离散化

1.离散化简介

把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。

离散化是一种将数组的值域压缩,从而更加关注元素的大小关系的算法。当原数组中的数字很大、负数、小数时(大多数情况下是数字很大),难以将“元素值”表示为“数组下标”,一些依靠下标实现的算法和数据结构无法实现时,我们就可以考虑将其离散化。

例如原数组的范围是[1,1e9],而数组大小仅为1e5,那么说明元素值的“种类数”最多也就1e5种,从而可以利用一个数组(即离散化数组)来表示某个元素值的排名(即第几小)现值域的压缩,将原数组的元素值作为下标来处理。

离散化数组要求内部是有序(一般是去重的,当然也存在不去重的方法,但是比较少见)的,中可以直接通过离散化下标得到值,当然也可以通过值得到离散化下标(通过二分实现)。下面是一个离散化的例子:
 

a(原数组)

(离散化数组)

index(下标)

不使用

2

0

3

3

1

1000

1000

2

2

9999

3

9999

4

2

5

离散化不会单独考察,一般会结合其他算法或数据结构一起考察,例如树状数组、线段树、二维平面的计算几何等等。

2.离散化的实现方法

离散化的实现方法比较多样,但原理相同,这里采用vector来进行离散化。

#include <bits/stdc++.h>

using namespace std;
vector<int> L;//离散化数组
//返回x在L中的下标

int getidx(int x)

{
return lower_ bound( L.begin(),L.end(),x)-L.begin();

}
const int N=1e5 + 9;
int a[n];
int main()

{
int n;

cin >> n;

for(int i = 1;i <= n; ++ i)

cin >> a[i];
//将元素存入L数组中

for(int i = 1;i <= n; ++ i)

L.push back(a[i]);
//排序去重
L.erase(unique(L.begin(),L.end()),L.end());
return 0;

}

4.代码示例

#include <bits/stdc++.h>

using namespace std;
const int N = le5 + 9;
vector<int> L;
int getidx(int x)

{
return lower_bound(L.begin(),L.end(),x) - L.begin

}
int main()
int n;

cin >> n;

for(int i = 1;i <= n; ++ i)

cin >> a[i];

for(int i = 1;i <= n; ++ i)

L.push_ back(a[i]);
sort(L.begin(),L.end());

L.erase(unique(L.begin(),L.end()),L.end());
cout<<“离散化数组为:”;

for(const auto &i : L)

cout << i < ' ' ;

cout << '\n';
int val;

cin >> val;
cout << getidx(val)<< '\n';

return 0;

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59798.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

echarts功能五 --geo地理组件、VisualMap图例组件

利用geoJson文件生成geo地理组件&#xff0c;如下图所示&#xff1a; 三个颜色区域分别代表了3个区域图层&#xff1b;淡蓝色代表了线条&#xff1b;正中心是geo地理组件&#xff1b;右下角展示图例&#xff0c;是VisualMap视觉映射组件。 共包含以下功能&#xff1a; &#…

WordCloudStudio:AI生成模版为您的文字云创意赋能 !

在信息泛滥的时代&#xff0c;如何有效地将文字内容变成生动的视觉元素&#xff1f;WordCloudStudio为您提供了答案。无论您是市场营销专家、教育工作者、数据分析师&#xff0c;还是创意设计师&#xff0c;WordCloudStudio都能帮助您轻松创建引人注目的文字云。更重要的是&…

25-RVIZ CARLA插件

RVIZ插件(RVIZ plugin)提供了一个基于RVIZ(RVIZ) ROS包的可视化工具。 用RVIZ运行ROS桥接 RVIZ插件需要一个名为ego_vehicle的自车。要查看ROS-bridge使用RVIZ的示例&#xff0c;请在运行CARLA服务器的情况下执行以下命令&#xff1a; 1. 启用RVIZ启动ROS桥接&#xff1a; # …

FP7209单节锂电升压恒流80V,PWM控制调光调色应急电源驱动方案,支持LED开路保护、LED短路保护、开关NMOS过电流保护、过温保护、过热保护

FP7209是针对LED驱动器的升压拓扑开关调节器。它提供了内置的门驱动销&#xff0c;用于驱动外部N-MOSFET。误差放大器的非反相输入端连接到一个0.25V的参考电压。如UVP、OVP、OCP等&#xff0c;保护系统电路有三个功能。LED电流可以通过一个连接到DIM针脚的外部信号来调整。DIM…

JS常用数组方法 reduce filter find forEach

文章目录 reduce应用&#xff1a;数据扁平化 filterfind从数组 [1,2,3,4,5,6] 中找出值为 2 的元素 forEach用于遍历&#xff0c;forEach 方法没有返回值&#xff0c;它总是返回 undefined。 reduce 数组变量名.reduce((sum,value) > { // 向sum变量上累加值 // 一定要retur…

精选报告| 2024年,5份必读的“虚仿教育”行业报告合集

以3D/XR应用为主的虚拟仿真实验教学课程&#xff0c;在教育信息化建设过程中已成为必选的技术方案。通过构建虚拟教育环境&#xff0c;允许学习者在数字空间中进行互动学习&#xff0c;这种方法在基础教育、职业培训、远程教育等关键教育领域已经展现出前所未有的变革潜力&…

Ethernet 系列(8)-- 基础学习::ARP

目录 1. ARP的目的&#xff1a; 1.1 什么是ARP 1.2 什么时候用ARP 2. ARP如何工作&#xff1a; 2.1 主机-主机的直接通信 2.2 主机-路由-主机的间接通信 3. ARP header&#xff1a; 1. ARP的目的&#xff1a; 1.1 什么是ARP: ARP-地址解析协议&#xff0c;是第3层地址&#xff…

uniapp组件实现省市区三级联动选择

1.导入插件 先将uni-data-picker组件导入我们的HBuilder项目中&#xff0c;在DCloud插件市场搜索uni-data-picker 点击下载插件并导入到我们的项目中 2.组件调用 curLocation &#xff1a;获取到的当前位置&#xff08;省市区&#xff09; <uni-data-picker v-slot:defa…

软件分享丨火绒应用商店

【资源分享】 资源名&#xff1a;火绒应用商店 官方网址&#xff1a;点击跳转 火绒应用商店是由火绒安全推出的一款独立软件。它提供了海量的应用程序&#xff0c;涵盖办公、社交、游戏、视频、工具等多种领域和类别&#xff0c;方便用户轻松找到所需的应用并进行一键下载安装…

信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)

1 编制目的 2 系统运行维护 2.1 系统运维内容 2.2 日常运行维护方案 2.2.1 日常巡检 2.2.2 状态监控 2.2.3 系统优化 2.2.4 软件系统问题处理及升级 2.2.5 系统数据库管理维护 2.2.6 灾难恢复 2.3 应急运行维护方案 2.3.1 启动应急流程 2.3.2 成立应急小组 2.3.3 应急处理过程 …

鸿蒙ArkTS中的布局容器组件(Column、Row、Flex、 Stack、Grid)

在鸿蒙ArkTS中&#xff0c;布局容器组件有很多&#xff0c;常见的有&#xff1a;   ⑴ Column&#xff1a;&#xff08;垂直布局容器&#xff09;&#xff1a;用于将子组件垂直排列。   ⑵ Row&#xff1a;&#xff08;水平布局容器&#xff09;&#xff1a;用于将子组件水…

RPC核心实现原理

目录 一、基本原理 二、详细步骤 三、额外考虑因素 RPC&#xff08;Remote Procedure Call&#xff0c;远程过程调用&#xff09;是一种计算机通信协议&#xff0c;也是一种用于实现分布式系统中不同节点之间进行通信和调用的技术。其实现原理主要可以分为以下几个步骤&…

Android Studio加载旧的安卓工程项目报错处理

文章目录 Invalid Gradle JDK configuration foundNDK not configuredCMake 3.10.2 was not found安装cmake适配cmake版本号 com.intellij.openapi.externalSystem.model.ExternalSystemExceptiongradle版本过低或下载不了下载gradle与依赖库超时替换gradle国内源替换Maven 仓库…

全星魅-物联网定位终端-北斗定位便携终端-北斗有源终端

在当今快速发展的物流运输行业中&#xff0c;精准定位与实时监控已成为确保货物安全与高效运输的关键因素。为了满足这一需求&#xff0c;QMCZ10作为一款集4G&#xff08;LTE Cat1&#xff09;通讯技术与智能定位功能于一体的终端产品&#xff0c;应运而生。它不仅具备普通定位…

银行卡二要素核验 API 对接说明

本文将介绍一种 银行卡二要素核验 API 对接说明&#xff0c;它可用于校验姓名和银行卡号的真实性和一致性。 接下来介绍下 银行卡二要素核验 API 的对接说明。 注册链接 点击链接注册&#xff0c;即可使用&#xff01; 申请流程 要使用 API&#xff0c;需要先到 银行卡二要…

关于elementui el-radio 赋值问题

今天遇到这样的问题&#xff1a; 点击的时候&#xff0c;同时选中 照抄官网&#xff01; 后来发现了问题&#xff1a; 也就是说如果你的版本太低&#xff0c;就不能用value&#xff0c;而得用label&#xff0c;于是修改 <el-radio-group v-model"searchTime"&g…

查缺补漏---子网划分方法(定长与不定长子网)

第一类题型&#xff1a; 方法&#xff1a;切蛋糕 例1&#xff1a; 现将一个 IP 网络划分成4个子网&#xff0c;若其中一个子网是 172.16.1.128/26&#xff0c;则下列网络中&#xff0c;不可能是另外三个子网之一的是&#xff08;&#xff09; A.172.16.1.0/25 B.172…

P11229 [CSP-J 2024] 小木棍

[CSP-J 2024] 小木棍 题目描述 小 S 喜欢收集小木棍。在收集了 n n n 根长度相等的小木棍之后&#xff0c;他闲来无事&#xff0c;便用它们拼起了数字。用小木棍拼每种数字的方法如下图所示。 现在小 S 希望拼出一个正整数&#xff0c;满足如下条件&#xff1a; 拼出这个数…

嵌入式开发之进程函数

1、进程创建-fork #include <unistd.h> pid_t fork(void); 创建新的进程&#xff0c;失败时返回-1成功时父进程返回子进程的进程号&#xff0c;子进程返回0通过fork的返回值区分父进程和子进程 pid_t pid; //fork子进程之后&#xff0c;子进程和父进程会同时继续往下执行…

【循环引用及格式化输出】

垃圾回收机制 当一个值在内存中直接引用跟间接引用的量为0时&#xff0c;&#xff08;即这个值没有任何入口可以找到它&#xff09;那么这个值就会被清空回收♻️&#xff0c;释放内存空间&#xff1b; 列表在内存中的存储方式 1&#xff09;引用计数的两种方式 x "ea…