结合创新!频域+时间序列,预测误差降低64.7%

频域+时间序列不仅能提供更丰富的信息,还能提高模型性能和预测准确性。对于论文er来说,是个可发挥空间大、可挖掘创新点多的研究方向。

具体来说:

  • 通过将复杂的时间序列数据转换成简单的频率成分,我们可以更容易地捕捉到数据的周期性和趋势,从而提高预测的准确性。

  • 通过将时间序列数据从时域转换到频域,利用频域特有的方法进行分析和特征提取,我们可以提高模型在多变量和单变量预测任务中的性能。

比如代表模型CTFNet,它结合了卷积映射和时频分解的轻量级单隐层前馈神经网络,可以将多变量和单变量时间序列的预测误差分别降低 64.7% 和 53.7%!

目前,时域分析和频域分析已经成为了时间序列领域的重要工具,频域相关也逐渐成了顶会常客。为帮助同学们获取论文灵感,本次我整理了12种结合创新方案,原文以及开源代码都附上了,方便同学们学习。

论文原文以及开源代码需要的同学看文末

Revisiting VAE for Unsupervised Time Series Anomaly Detection: A Frequency Perspective

方法:本文提出一种新的无监督异常检测方法FCVAE,该方法通过引入频域信息作为条件,利用全局和局部频域特征来更准确地捕捉异构周期模式和详细趋势模式,从而实现更准确的异常检测。

创新点:

  • 作者提出了一种名为FCVAE的新型无监督异常检测方法,该方法在模型层面上引入频域信息作为条件来与CVAE一起工作,通过同时捕获全局和局部频域特征,并利用目标注意力机制更有效地提取局部信息,实现更准确的异常检测。

  • 作者提出了几种新技术,包括CM-ELBO、数据增强和屏蔽最后一个点,这些技术在提高检测准确性方面起到了重要作用。

  • 作者提出了一种新颖的数据增强方法,主要针对异常数据的模式突变和数值突变进行增强,从而提高了模型在无监督设置下的性能。

ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting

方法:论文提出了一种名为ATFNet的时间序列预测模型,旨在同时处理局部和全局依赖关系,并有效地结合时间域和频率域的优势。该模型包含一个时间域模块和一个频率模块,并引入了一种新颖的加权机制,根据输入序列的周期性水平动态分配权重。

创新点:

  • ATFNet是一种将时域模块和频域模块结合起来处理时间序列数据的创新框架。

  • ATFNet引入了"主导谐波能量加权"的新机制,根据输入时间序列的周期性动态调整时域模块和频域模块之间的权重,从而有效利用两个模块的优势。

  • ATFNet还引入了"扩展离散傅里叶变换"的方法,解决了频谱频率对齐的问题,提高了表示特定频率的准确性。

  • ATFNet提出了"复数谱关注"机制,有效捕捉不同频率组合之间的复杂关系。

TFDNet: Time-Frequency Enhanced DecomposedNetwork for Long-term Time Series Forecasting

方法:论文提出了一种名为TFDNet的方法。该方法通过时间频率增强编码器处理时间序列数据,其中包括趋势时间频率块和季节时间频率块。趋势时间频率块通过共享核对趋势模式进行处理,而季节时间频率块根据不同数据集的季节特性设计了两个版本,即使用个体核和多个共享核。最后,通过融合编码器表示来预测未来的时间序列。

创新点:

  • 提出了一种名为TFDNet的时间频率增强分解网络,用于长期时间序列预测。

  • 设计了多尺度的时间频率增强编码器,用于捕捉分解的趋势和季节组件中的不同模式。

  • 开发了两个独立的趋势和季节时间频率块,以捕捉多分辨率中的不同模式。

  • 研究了多种通道相关模式的核操作策略,并引入了单独核策略和多核共享策略。

  • 引入了混合损失来实现鲁棒的预测,结合了L1损失和L2损失。

A Joint Time-frequency Domain Transformer for Multivariate Time Series Forecasting

方法:论文介绍了联合时频域Transformer(JTFT)。JTFT通过结合时域和频域表示来进行预测。频域表示通过利用少量可学习的频率来高效提取多尺度依赖关系并保持稀疏性。同时,时间域表示从最近的数据点中得出,增强了局部关系的建模并减轻了非平稳性的影响。

创新点:

  • JTFT结合了时域和频域表示来进行预测,有效地捕捉了多尺度依赖性和局部关系,同时缓解了非平稳性。

  • 在JTFT中,频域(FD)表示使用了一种自定义的离散余弦变换(CDCT),它允许学习频率,从而提取可能与传统离散余弦变换(DCT)的均匀频率网格不一致的周期性依赖性。

  • JTFT引入了低秩注意力层(LRA),以高效地捕捉跨通道依赖性,通过缓解时间和通道依赖性捕捉中的纠缠和冗余,提高了预测性能。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“频时结合”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/5873.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【人工智能基础】逻辑回归实验分析

实验环境:anaconda、jutpyter Notebook 实验使用的库:numpy、matplotlib 一、逻辑回归 逻辑回归是一个常用于二分类的分类模型。本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。 二、实验准备 引入库、预设值…

Sam Altman:那些我希望有人能早点告诉我的事

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识…

【跟我学RISC-V】(一)认识RISC-V指令集并搭建实验环境

写在前面 现在计算机的体系架构正是发展得如火如荼的时候,占领桌面端市场的x86架构、占领移动端市场的arm架构、在服务器市场仍有一定地位的mips架构、国产自研的指令集loongarch架构、还有我现在要讲到的新型开源开放的RISC-V指令集架构。 我先说一说我的学习经历…

初始计算机网络

TCP/IP TCP/IP模型 TCP/IP网络模型:对于不同设备之间的通信,就需要网络通信,而设备是多样性的,所以要兼容多种多样的设备,就协商出了一套通用的网络协议。 TCP/IP分层 这个网络协议是分层的,每一层都有…

【MATLAB】GUI初步设计

MATLAB界面设计 前言一、基本步骤1.1 创建GUI文件1.2 界面设计 总结 前言 为了完成图像处理的作业,简直就是生活不易啊 找到一个很棒的教学视频 基于MATLAB的GUI界面设计流程讲解 一、基本步骤 1.1 创建GUI文件 由于在写博文之前我已经创建好文件了,…

文件批量高效管理,批量将PDF类型文件移动到指定文件夹里,实现文件高效管理

文件的管理与整理成为了我们生活中不可或缺的一部分。面对堆积如山的PDF文件,你是否也曾感到手足无措、焦头烂额?现在,有了我们的批量文件管理工具,PDF文件的管理将变得前所未有的高效与简单! 首先,我们要…

拆单算法交易(Algorithmic Trading)

TWAP TWAP交易时间加权平均价格Time Weighted Average Price 模型,是把一个母单的数量平均地分配到一个交易时段上。该模型将交易时间进行均匀分割,并在每个分割节点上将拆分的订单进行提交。例如,可以将某个交易日的交易时间平均分为N 段&am…

compose调用系统分享功能分享图片文件

compose调用系统分享功能图片文件 简介UI界面提供给外部程序的文件访问权限创建FileProvider设置共享文件夹 通用分享工具虚拟机验证结果参考 本系列用于新人安卓基础入门学习笔记,有任何不同的见解欢迎留言 运行环境 jdk17 andriod 34 compose material3 简介 本案…

JavaEE_操作系统之进程(计算机体系,,指令,进程的概念、组成、特性、PCB)

一、冯诺依曼体系(Von Neumann Architecture) 现代的计算机, 大多遵守冯诺依曼体系结构 CPU 中央处理器: 进行算术运算和逻辑判断.存储器: 分为外存和内存, 用于存储数据(使用二进制方式存储)输入设备: 用户给计算机发号施令的设备.输出设备: 计算机个…

基于php+mysql+html超市商品管理系统(含论文)

博主介绍: 大家好,本人精通Java、Python、Php、C#、C、C编程语言,同时也熟练掌握微信小程序、Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…

【数据结构-之八大排序(下),冒泡排序,快速排序,挖坑法,归并排序】

🌈个人主页:努力学编程’ ⛅个人推荐:基于java提供的ArrayList实现的扑克牌游戏 |C贪吃蛇详解 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 …

eve 导入linux

mkdir /opt/unetlab/addons/qemu/linux-centos7 cd /opt/unetlab/addons/qemu/linux-centos7 上传hda.qcow2 /opt/unetlab/wrappers/unl_wrapper -a fixpermissions Linux images - (eve-ng.net) Due to very high demand of this section and problems with how to crea…

【车载开发系列】MCAL基本概念

【车载开发系列】MCAL基本概念 【车载开发系列】MCAL基本概念 【车载开发系列】MCAL基本概念一. BSW与MCAL1)BSW-服务层2)BSW-ECU抽象层3)MCAL驱动层 二. MCAL基本概念三. MCAL组成1)PORT2)DIO3)ADC4&#…

阿里云开源大模型开发环境搭建

ModelScope是阿里云通义千问开源的大模型开发者社区,本文主要描述AI大模型开发环境的搭建。 如上所示,安装ModelScope大模型基础库开发框架的命令行参数,使用清华大学提供的镜像地址 如上所示,在JetBrains PyCharm的项目工程终端控…

机器人正反向运动学(FK和IK)

绕第一个顶点可以沿Z轴转动,角度用alpha表示 绕第二个点沿X轴转动,角度为Beta 第三个点沿X轴转动,记作gama 这三个点构成姿态(pose) 我们记第一个点为P0,画出它的本地坐标系,和世界坐标系一样红…

SpringCloud知识点梳理

1. Spring Cloud 综述 1.1 Spring Cloud 是什么 [百度百科]Spring Cloud是⼀系列框架的有序集合。它利⽤Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中⼼、消息总线、负载均衡、断路器、数据监控等,都可以⽤ Spring Boot的开发⻛格…

(C语言)文件操作与函数,超详解

目录 1. 文件 1.1 为什么使用文件? 1.2 什么是文件? 1.2.1 程序文件 1.2.2 数据文件 1.3 文件名 1.4 二进制文件和文本文件 2. 文件的打开和关闭 2.1 流和标准流 2.1.1 流 2.1.2 标准流 2.2 文件指针 2.3 文件的打开和关闭 3. 文件的顺序…

Go Web 开发【Gin 框架快速开发】

1、Gin Web 快速开发 1.1、环境准备 1.1.1、导入 gin 依赖 这里就叫 gin 依赖了,在 Goland 命令行中输入下面的命令: go get -u github.com/gin-gonic/gin 1.1.2、设置代理 如果下载失败,最好设置一下代理,在 cmd 命令行中输…

深度学习论文:Local Feature Matching Using Deep Learning: A Survey

深度学习论文: Local Feature Matching Using Deep Learning: A Survey Local Feature Matching Using Deep Learning: A Survey PDF: https://arxiv.org/pdf/2401.17592 1 概述 近年来,深度学习模型的引入引发了对局部特征匹配技术的广泛探索。本文旨在全面概述局…

爬虫学习:基本网络请求库的使用

目录 一、urllib网络库 1.urlopen()方法 2.request方法 二、requests网络请求库 1.主要方法 2.requests.get()和requests.post() 一、urllib网络库 1.urlopen()方法 语法格式: urlopen(url,data,timeout,cafile,capath,context) # url:地址 # data:要提交的数据…