计算机视觉实验一:图像基础处理

1. 图像的直方图均衡

1.1 实验目的与要求

(1)理解直方图均衡的原理与作用;

(2)掌握统计图像直方图的方法;

(3)掌握图像直方图均衡的方法。

1.2 实验原理及知识点

        直方图均衡化是通过灰度变换将一幅图象转换为另一幅均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法。直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。直方图均衡的缺点是:1、变换后图像的灰度级减少,某些细节消失;2、某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

1.3 实验仪器与软件

(1) PC计算机

(2) MatLab或opencv 

(3) 实验所需要的图片 (注意: 示例代码中的如 rice.png,pout.tif 等图片一般可以直接使用不需要准备,这些图片是安装matlab后就有的示例图片,如果读不了可以尝试修改一下文件名的后缀,如.png,.jpg或者.tif,也可以在本报告中另存图片在工作目录上)

1.4 实验报告要求

描述实验的基本步骤,用数据和图片给出各个步骤中取得的实验结果和源代码,并进行必要的讨论,必须包括原始图像及其计算/处理后的图像。

1.5 实验内容及步骤

(1) 直方图显示

 读入图像‘rice.png’,在一个窗口中显示灰度级n=64,128和256的图像直方图。

% 读入图像
image = imread('rice.png');
% 显示灰度级为64的直方图
subplot(3,1,1);
imhist(image, 64);
title('Histogram with 64 Gray Levels');
% 显示灰度级为128的直方图
subplot(3,1,2);
imhist(image, 128);
title('Histogram with 128 Gray Levels');
% 显示灰度级为256的直方图
subplot(3,1,3);
imhist(image, 256);
title('Histogram with 256 Gray Levels');

(2)直方图灰度调节

利用函数imadjust调解图像灰度范围,观察变换后的图像及其直方图的变化。

% 读入图像
image = imread('rice.png');
% 对图像进行灰度范围调节
adjusted_image = imadjust(image);
% 显示原图像
subplot(2,2,1);
imshow(image);
title('Original Image');
% 显示原图像的直方图
subplot(2,2,2);
imhist(image);
title('Original Histogram');
% 显示调节后的图像
subplot(2,2,3);
imshow(adjusted_image);
title('Adjusted Image');
% 显示调节后的图像的直方图
subplot(2,2,4);
imhist(adjusted_image);
title('Adjusted Histogram');

 (3)直方图均衡化

分别对图像‘pout.tif’和‘tire.tif’进行直方图均衡化处理,比较处理前后图像及直方图分布的变化。

% 读入图像1
image1 = imread('pout.tif');% 读入图像2
image2 = imread('tire.tif');% 对图像1进行直方图均衡化
equalized_image1 = histeq(image1);% 对图像2进行直方图均衡化
equalized_image2 = histeq(image2);% 显示处理前的图像和直方图
subplot(2,4,1);
imshow(image1);
title('Original Image 1');subplot(2,4,2);
imhist(image1);
title('Original Histogram 1');subplot(2,4,5);
imshow(image2);
title('Original Image 2');subplot(2,4,6);
imhist(image2);
title('Original Histogram 2');% 显示处理后的图像和直方图
subplot(2,4,3);
imshow(equalized_image1);
title('Equalized Image 1');subplot(2,4,4);
imhist(equalized_image1);
title('Equalized Histogram 1');subplot(2,4,7);
imshow(equalized_image2);
title('Equalized Image 2');subplot(2,4,8);
imhist(equalized_image2);
title('Equalized Histogram 2');

(4)读取一幅彩色图像(图片自己准备),对RGB图像的每个通道进行直方图均衡化,对均衡化后进行重新合并成彩色图像,展示不同阶段的图像效果。另将RGB图像转换为HSV图像(rgb2hsv函数),分别对三分量的图像行直方图均衡化,最后合并成新的彩色图像,分析不同阶段的图像效果。

% 读入彩色图像
rgb_image = imread('你的图片文件路径');% 对RGB图像的每个通道进行直方图均衡化
equalized_R = histeq(rgb_image(:,:,1));
equalized_G = histeq(rgb_image(:,:,2));
equalized_B = histeq(rgb_image(:,:,3));% 合并三个通道成彩色图像
equalized_rgb_image = cat(3, equalized_R, equalized_G, equalized_B);% 显示不同阶段的图像效果
subplot(2,3,1);
imshow(rgb_image);
title('Original RGB Image');subplot(2,3,2);
imshow(equalized_R);
title('Equalized Red Channel');subplot(2,3,3);
imshow(equalized_G);
title('Equalized Green Channel');subplot(2,3,4);
imshow(equalized_B);
title('Equalized Blue Channel');subplot(2,3,5);
imshow(equalized_rgb_image);
title('Equalized RGB Image');% 将RGB图像转换为HSV图像
hsv_image = rgb2hsv(rgb_image);% 分别对HSV图像的三分量进行直方图均衡化
equalized_h = histeq(hsv_image(:,:,1));
equalized_s = histeq(hsv_image(:,:,2));
equalized_v = histeq(hsv_image(:,:,3));% 合并三个通道成新的彩色图像
equalized_hsv_image = cat(3, equalized_h, equalized_s, equalized_v);% 转回RGB图像
equalized_rgb_from_hsv = hsv2rgb(equalized_hsv_image);% 显示不同阶段的图像效果
figure;
subplot(1,2,1);
imshow(equalized_rgb_image);
title('Equalized RGB Image');subplot(1,2,2);
imshow(equalized_rgb_from_hsv);
title('Equalized RGB Image from HSV');

(5)自行设计程序实现图像的直方图均衡(选做,即不使用matlab或其它库内的相关函数实现)。

选做就是不做

2. 图像的形态学操作

2.1 实验目的与要求

目的:学习常见的数学形态学运算基本方法,了解腐蚀、膨胀、开运算、闭运算取得的效果,培养处理实际图像的能力。

2.2 实验原理及知识点

数学形态学是一种基于形状的图像处理理论和方法,数学形态学图像处理的基本思想是选择具有一定尺寸和形状的结构元素,并提取图像中相关形状结构的图像分量,以达到对图像分析和识别的目的。

膨胀和腐蚀是数学形态学图像处理的两个基本运算,其他数学形态学运算或算法均是以这两种基本运算为基础。二值图像形态学的基本运算包括膨胀、腐蚀、开运算、闭运算和击中击不中运算。在基本运算的基础上设计了多种二值形态学的实用算法,例如,去噪、边界提取、孔洞填充、连通分量的提取、骨架、凸包、细化、粗化、剪枝。灰度形态学的基本运算包括灰度膨胀、灰度腐蚀、灰度的开运算和闭运算,在基本的运算的基础上,灰度图像形态学的主要算法有顶帽变换、底帽变换和灰度形态学重构。数学形态学算法具有利于并行实现的结构,适合于并行操作,且硬件上容易实现。

在二值图像形态学中,结构元素是一个由0值和1值组成的矩阵。每一个结构元素有一个原点,结构元素中的原点指定待处理像素的位置。结构元素中的1值定义了结构元素的邻域,输出图像中对应原点的值建立在输入图像中相应像素及其邻域像素比较的基础上。在以下操作中,设Α表示二值图像,B表示结构元素,使用结构元素B对二值图像A进行操作。

2.2.1 膨胀

膨胀是将与物体接触的所有背景点合并到该物体中,使边界外部向外扩张的过程。通过膨胀,可以填充图像中的小孔及在图像边缘外的小凹陷部分。

2.2.2 腐蚀

腐蚀和膨胀是对偶操作。腐蚀是移除图像中目标边界的像素,使边界向内部收缩的过程。利用腐蚀操作,可以消除小且无意义的物体。

2.2.3 开运算

2.2.4 闭运算

2.3 实验仪器与软件

(1) PC计算机

(2) MatLab或opencv 

(3) 实验所需要的图片

2.4 实验报告要求

描述实验的基本步骤,用数据和图片给出各个步骤中取得的实验结果和源代码,并进行必要的讨论,必须包括原始图像及其计算/处理后的图像。

2.5 实验内容及步骤

(1)图像膨胀

a)对包含矩形对象的二进制图像进行膨胀操作。

BW=zeros(9,10);
BW(4:6,4:7)=1;
imshow(BW,'notruesize')
se=strel('square',3); 		
BW2=imdilate(BW,se);
figure,imshow(BW2,'notruesize')

 b)改变上述结构元素类型(如:line, diamond, disk等),重新进行膨胀操作。

Line: BW=zeros(9,10);
BW(4:6,4:7)=1;
imshow(BW,'notruesize')
se=strel('line',3,3); 		
BW2=imdilate(BW,se);
figure,imshow(BW2,'notruesize')

(2)图像腐蚀  

a) 对图像‘circbw.tif’(系统自带图像可以直接读取)进行腐蚀操作。

BW1=imread('circbw.tif');
se=strel('arbitrary',eye(5));
BW2=imerode(BW1,se);
imshow(BW1)
figure,imshow(BW2)

b) 对图像‘text.tif’进行腐蚀操作。我的MATLAB没有自带text.tif,我换成了其他

BW=imread('text.tif');
se=strel('line',11,90);
BW2=imerode(BW3,se);
imshow(BW)
figure,imshow(BW2)

(3)膨胀与腐蚀的综合使用

a) 从原始图像‘circbw.tif’中删除电流线,仅保留芯片对象。

方法一:先腐蚀(imerode),再膨胀(imdilate);

BW1=imread('circbw.tif');
imshow(BW1)
se=strel('rectangle',[40 30]); 	%选择适当大小的矩形结构元素
BW2=imerode(BW1,se);   		%先腐蚀,删除较细的直线
figure,imshow(BW2)
BW3=imdilate(BW2,se);  		%再膨胀,恢复矩形的大小
figure,imshow(BW3)

方法二:使用形态开启函数(imopen)。

BW1=imread('circbw.tif');
imshow(BW1)
se=strel('rectangle',[30,20]); 
BW2=imopen(BW1,se);     		%开启操作
figure,imshow(BW2)

b)改变结构元素的大小,重新进行开启操作,观察处理结果。

se=strel(‘rectangle’,[20 10]);
se=strel(‘rectangle’,[50 40]);

c)置结构元素大小为[4 3],同时观察形态开启(imopen)与闭合(imclose)的效果,总结形态开启与闭合在图像处理中的作用。

I=imread('circbw.tif');
imshow(I)
se=strel('rectangle',[4 3]); 
I1=imopen(I,se);     		%开启操作
I2=imclose(I,se);    			%闭合操作
figure,imshow(I1)
figure,imshow(I2)

(4)利用数学形态学函数bwmorph(BW,'skel',Inf),对下面二值图像的目标提取骨架,并分析骨架结构。其中,BW表示二值图像。

图片自提:计算机视觉实验一:图像基础处理资源-CSDN文库

% 读入二值图像(替换'your_binary_image.png'为实际图像文件名)
BW = imread('your_binary_image.png');% 提取骨架
skeleton = bwmorph(BW, 'skel', Inf);% 显示原始图像和骨架
figure;
subplot(1, 2, 1);
imshow(BW);
title('Original Binary Image');subplot(1, 2, 2);
imshow(skeleton);
title('Skeleton');% 分析骨架结构
% 可以进行一些骨架结构分析,如检测骨架中的交叉点和端点。
% 以下是一个示例来检测和可视化骨架的交叉点和端点:% 检测骨架的交叉点
branchpoints = bwmorph(skeleton, 'branchpoints');% 检测骨架的端点
endpoints = bwmorph(skeleton, 'endpoints');% 可视化交叉点和端点
[r_branch, c_branch] = find(branchpoints);
[r_end, c_end] = find(endpoints);% 显示骨架,交叉点和端点
figure;
imshow(skeleton);
hold on;% 交叉点用红色表示
plot(c_branch, r_branch, 'ro', 'MarkerSize', 10);% 端点用蓝色表示
plot(c_end, r_end, 'bo', 'MarkerSize', 10);title('Skeleton with Branchpoints and Endpoints');

 3.实验参考图像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/58562.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算结构力学:多自由度振动系统

本文以笔记的形式记录计算结构力学的若干基础知识。 注1:限于研究水平,分析难免不当,欢迎批评指正。 注2:文章内容会不定期更新。 预修1:线性代数 1. 标准特征值 复矩阵Schur分解:对于复矩阵&#xff0c…

Linux基础环境搭建(CentOS7)- 安装Scala和Spark

#Linux基础环境搭建(CentOS7)- 安装Scala和Spark Linux基础环境搭建(CentOS7)- 安装Scala和Spark 大家注意以下的环境搭建版本号,如果版本不匹配有可能出现问题!(spark不要下2.4版本的 会报错…

Vue3使用AntV | X6绘制流程图:开箱即用

x6官方地址X6图编辑引擎 | AntV 官方文档仔细地介绍了很多丰富的功能,这里的demo可以满足基本的使用,具体拓展还需要仔细看文档内容 先上效果图 1、安装 通过 npm 或 yarn 命令安装 X6。 # npm npm install @antv/x6 --save# yarn yarn add @antv/x6 初始化画布 <di…

安装使用docker harbor并推送镜像到仓库

1.概要 通过上一章节的讲解&#xff0c;我们基本了解了docker的操作命令&#xff0c;在文章的最后我们成功的推送一个镜像到DockerHub的镜像仓库。从流程上说&#xff0c;操作过程可以说很完美&#xff0c;但是整个推送过程消耗的时间太长&#xff0c;我们消耗了大量时间在访问…

HTML练习题:彼岸的花(web)

展示效果: 代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>彼岸の花</title><style…

thinkphp和vue基于Workerman搭建Websocket服务实现用户实时聊天,完整前后端源码demo及数据表sql

最近接了一个陪玩小程序&#xff0c;其中有一个实时聊天的项目&#xff0c;需要搭建Websocke服务&#xff0c;通过多方考虑选择了通过GatewayWorker框架&#xff08;基于Workerman&#xff09;,将代码提取了出来&#xff0c;用到的框架封装到了vendor目录下&#xff0c;完整前后…

【计算机网络 - 基础问题】每日 3 题(五十八)

✍个人博客&#xff1a;https://blog.csdn.net/Newin2020?typeblog &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/fYaBd &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞…

C++ 二叉树进阶:相关习题解析

目录 1. 二叉树创建字符串。 2. 二叉树的分层遍历1 3. 二叉树的分层遍历2 4. 二叉树的最近公共祖先 5. 将二叉搜索树转换为排序的双向链表 6. 从前序与中序遍历序列构造二叉树 7. 从中序与后序遍历序列构造二叉树 8. 二叉树的前序遍历&#xff0c;非递归迭代实现 9.…

云舟观测:基于eBPF监控主机的TCP网络连接

1 背景 机器网络监控信息在日常问题排查中扮演着至关重要的角色&#xff0c;是不可或缺的工具。通过对网络流量的深入分析&#xff0c;我们不仅能有效评估网络性能&#xff0c;还能迅速识别异常行为&#xff0c;例如流量突然激增、未知的数据传输等&#xff0c;这些对于保障网络…

【IC每日一题】

IC每日一题 1&#xff1a;锁存器(latch)、触发器(flip-flop)、寄存器的概念及区别1.1 概念1.2 锁存器的危害1.3 如何避免产生锁存器 2 手撕题&#xff1a;边沿检测2.1 边沿检测(上升沿、下降沿、双边沿)2.1.1 波形图2.1.2 算法步骤2.1.3 代码 2.2 序列模三检测器2.2.1 描述2.2.…

使用 Docker Compose 将数据版 LobeChat 服务端部署

LobeChat 是一个基于 TypeScript 的开源聊天机器人项目&#xff0c;支持本地部署和接入多个大语言模型。本文介绍如何使用 Docker Compose 将 LobeChat 服务端及其数据库部署到生产环境&#xff0c;让您拥有一个私有化的、可定制的 AI 聊天助手。 一、部署前准备 服务器&…

DICOM标准:DICOM服务类详解,了解存储服务类、查询/检索服务类(Q/R Service Class)和工作流管理服务类等原理

目录 一、概述 二、存储服务类&#xff08;Storage Service Class&#xff09; 存储操作&#xff08;C-STORE&#xff09; 确认操作&#xff08;C-STORE-RSP&#xff09; 三、查询/检索服务类&#xff08;Query/Retrieve Service Class&#xff09; 查询操作&#xff08;C…

八,Linux基础环境搭建(CentOS7)- 安装Mysql和Hive

Linux基础环境搭建&#xff08;CentOS7&#xff09;- 安装Mysql和Hive 大家注意以下的环境搭建版本号&#xff0c;如果版本不匹配有可能出现问题&#xff01; 一、Mysql下载及安装 MySQL是一个关系型数据库管理系统&#xff0c;由瑞典MySQL AB 公司开发&#xff0c;属于 Orac…

Virtuoso使用layout绘制版图、使用Calibre验证DRC和LVS

1 绘制版图 1.1 进入Layout XL 绘制好Schmatic后&#xff0c;在原理图界面点击Launch&#xff0c;点击Layout XL进入版图绘制界面。 1.2 导入元件 1、在Layout XL界面左下角找到Generate All from Source。 2、在Generate Layout界面&#xff0c;选中“Instance”&#…

Spring事务的实现方式

前言 Spring的spring-tx模块提供了对事务管理支持&#xff0c;使用Spring事务可以让我们从复杂的事务处理中得到解脱&#xff0c;无需去处理获得连接、关闭连接、事务提交和回滚等这些操作。Spring事务管理是Spring框架提供的一个核心功能&#xff0c;它允许开发者以声明式或编…

线性代数(1)——线性方程组的几何意义

线性代数的基本问题是求解个未知数的个线性方程&#xff1b; 例如&#xff1a;&#xff08;方程1&#xff09;。 在线性代数的第一讲中&#xff0c;我们从Row Picture、Column Picture、Matrix Picture三个角度来看这个问题。 上面的系统是二维的。通过添加第三个变量&#…

没有对象来和我手撕红黑树吧

1. 红黑树的介绍 红黑树也是一种自平衡的二叉搜索树&#xff0c;在每一个节点增加了一个存储位来表示节点的颜色&#xff0c;可以是红色也可以是黑色&#xff0c;通过约束颜色来维持树的平衡&#xff0c;具有以下的性质&#xff1a; 每个节点不是红色就是黑色根节点为黑色如果…

Android中SurfaceView与GLSurfaceView 的关系

SurfaceView 与 GLSurfaceView 的关系 在 Android 开发中&#xff0c;SurfaceView 和 GLSurfaceView 是实现自定义渲染效果的关键组件。它们提供了不同的渲染方式&#xff0c;适用于不同的应用场景。我们将通过以下几个方面详细说明 SurfaceView 和 GLSurfaceView 的特点及实现…

DEVOPS: 容器与虚拟化与云原生

概述 传统虚拟机&#xff0c;利用 hypervisor&#xff0c;模拟出独立的硬件和系统&#xff0c;在此之上创建应用虚拟机是一个主机模拟出多个主机虚拟机需要先拥有独立的系统docker 是把应用及配套环境独立打包成一个单位docker 是在主机系统中建立多个应用及配套环境docker 是…

H7-TOOL的LUA小程序教程第16期:脉冲测量,4路PWM,多路GPIO和波形打印(2024-10-25, 更新完毕)

LUA脚本的好处是用户可以根据自己注册的一批API&#xff08;当前TOOL已经提供了几百个函数供大家使用&#xff09;&#xff0c;实现各种小程序&#xff0c;不再限制Flash里面已经下载的程序&#xff0c;就跟手机安装APP差不多&#xff0c;所以在H7-TOOL里面被广泛使用&#xff…