【AI大模型】ChatGPT模型原理介绍

ChatGPT 是一种基于大规模深度学习语言模型 GPT(Generative Pre-trained Transformer)的 AI 模型。它使用自然语言处理(NLP)技术,基于大量文本数据进行训练,通过生成式模型来理解和生成自然语言对话。以下是 ChatGPT 模型的工作原理和关键技术的介绍。

一、ChatGPT 的核心模型:GPT(Generative Pre-trained Transformer)

GPT 是由 OpenAI 开发的生成式预训练模型,采用了 Transformer 架构。Transformer 是一种基于注意力机制的神经网络架构,特别适合处理序列数据,如文本和时间序列数据。

1. Transformer 架构

Transformer 架构包括两个主要部分:编码器(Encoder)和解码器(Decoder)。GPT 只使用 Transformer 的解码器部分,旨在生成文本:

  • 自注意力机制:GPT 利用自注意力机制,能识别输入序列中不同词语之间的关联。自注意力机制可以使模型在生成下一个词时,关注到上下文的关键信息。
  • 位置编码(Positional Encoding):由于 Transformer 是无序的,GPT 使用位置编码将位置信息注入词向量,使模型捕捉序列中的相对顺序信息。
2. 预训练与微调

GPT 采用 预训练 + 微调 的训练方式:

  • 预训练:模型首先在海量的非结构化文本数据上进行无监督训练,通过预测下一词来学习语言模式。这一阶段让模型学习大量语法、语义和常识知识。
  • 微调:为适应特定任务需求,GPT 会在特定领域的数据集上进行微调(有时称为“指令微调”),并结合人类反馈强化学习(RLHF),使其在聊天对话中更符合人类表达和期望。

二、ChatGPT 的工作机制

在与 ChatGPT 互动时,模型采用的主要技术包括 生成式任务处理对话上下文管理人类反馈强化学习 等。

1. 生成式任务处理

ChatGPT 是生成式模型,通过接收输入序列,逐步生成回应。它的生成过程基于概率,每个词的选择由模型在上下文中的条件概率决定。

  • 采样策略:生成文本时,ChatGPT 采用一定的采样策略(如 温度采样Top-K 采样Top-P 采样)。温度参数控制生成文本的随机性,而 Top-K 和 Top-P 策略可以控制模型考虑的词范围,以提升生成文本的连贯性和流畅性。
2. 上下文管理与长文本处理

ChatGPT 能根据历史对话上下文生成连贯的回答。其最大输入长度受限(如 GPT-3.5 的输入限制为约 4096 个词元),在超出此长度后模型会截断较早的上下文。

  • 滑动窗口策略:当输入长度接近上限时,可以通过滑动窗口的方法保留最近的上下文。
  • 记忆机制的探索:为优化长对话体验,有些 ChatGPT 版本尝试引入记忆机制,保存关键上下文,帮助模型在长时间内“记住”用户的偏好和主题。
3. 人类反馈强化学习(RLHF)

为了增强模型在对话中的表现,OpenAI 使用 人类反馈强化学习(Reinforcement Learning from Human Feedback, RLHF)。具体过程如下:

  • 奖励模型(Reward Model):人类标注员根据模型的回答质量评分,建立奖励模型。
  • 策略优化:在大量对话数据上训练奖励模型后,使用强化学习(通常是 PPO,Proximal Policy Optimization)对 GPT 模型进行调优。这个过程优化模型生成的对话,使其更符合人类的预期和需求。

三、ChatGPT 的技术优势

  1. 语言理解与生成:ChatGPT 对自然语言的语法、语义和语用均有良好的理解,能够生成符合人类逻辑的连贯文本。
  2. 多轮对话能力:通过上下文管理,ChatGPT 能够在多轮对话中保持连贯性,并根据用户的反馈和指令调整回应。
  3. 常识与知识:由于预训练数据涵盖了大量人类知识,ChatGPT 在很多任务中能体现出丰富的常识储备和专业知识。

四、ChatGPT 的应用场景

ChatGPT 可用于多种应用场景,如:

  1. 客户服务:为客户提供实时支持,解决基础性问题。
  2. 智能助手:帮助用户进行日常事务管理、问题解答、信息查询等。
  3. 内容生成:辅助生成创意文案、总结文本、编写代码等。
  4. 教育与培训:为学习者提供个性化辅导,回答学术问题,解释概念。
  5. 数据分析与推荐:利用 NLP 技术协助分析数据,提供有用的见解或推荐。

五、ChatGPT 的挑战与改进方向

  1. 上下文记忆:在长对话中保持连贯性仍然是个挑战。探索记忆机制或拓展上下文窗口长度是未来改进的重点。
  2. 知识更新:模型的知识有限,更新至最新的数据需要频繁的重新训练或微调,未来可能会通过插件或联网查询实时数据。
  3. 对话安全性:应避免产生不当内容或有偏见的回答,对此可以通过优化 RLHF 或在生成时添加内容过滤。
  4. 多模态能力:未来 ChatGPT 可加入图像、音频等多模态输入,提供更丰富的交互方式。

ChatGPT 基于强大的 Transformer 结构和人类反馈优化方法,已实现优越的语言理解和生成能力,广泛应用于各类对话和自动化任务,并随着技术的进步在不断优化和扩展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/58018.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序live-pusher和video同时使用,video播放声音时时大时小

一、遇到的问题 微信小程序live-pusher和video同时使用,video播放声音时有时无时大时小 二、排查流程 业务是模拟面试,每道题一个推流live-pusher和一个面试题video,一次面试有多道面试题,页面就一个live-pusher和一个video,切换面试题时给live-pusher和video重新赋值u…

gitlab 配置ssh keys

settings -- 终端配置: git config --global user.email "yxthotmail.cm" 配置gitlab 账号邮箱 git config --global user.name "xt.yao" 配置gitlab账号用户名 生成SSH key,输入命令ssh-keygen -t rsa,一直按回车…

管家婆财贸ERP BB033.查看历史销售选存货

最低适用版本: 财贸系列 21.5 插件简要功能说明: 销售单支持选择历史销售明细数据,快捷开单采购单保存后,明细存货的存货备用8更新为当前采购单制单日期更多细节描述见下方详细文档插件操作视频: 进销存类定制插件--查看历史销售选存货 插件详细功能文档: 1. 销售单增…

JavaScript 的 class 和箭头函数

在JavaScript中,class 和箭头函数(Arrow functions)是ES6(ECMAScript 2015)引入的两个重要特性,它们分别提供了更简洁和更强大的方式来定义对象和函数。下面是对这两个特性的详细解释: Class&a…

使用Vue.js构建响应式Web应用

💖 博客主页:瑕疵的CSDN主页 💻 Gitee主页:瑕疵的gitee主页 🚀 文章专栏:《热点资讯》 使用Vue.js构建响应式Web应用 1 引言 2 Vue.js简介 3 安装Vue CLI 4 创建Vue项目 5 设计应用结构 6 创建组件 7 使用…

【nnUNet v2—修改网络】——马上更新

目录 一、二级目录三级目录 参考 一、 二级目录 三级目录 参考 [1] UUNet训练自己写的网络 [2] 【nnUNet v2版本 如何训练自己设计的网络】 [3] nnUnetV2:自定义网络 [4] link [5] link

音频重采样(libresample)

https://github.com/minorninth/libresample USB audio同步问题及Jitter分析_usb mic i2s 时钟不同步-CSDN博客 是的,电脑和 USB 摄像头之间的 UAC(USB Audio Class)传输,**可能会因为两边时钟不同步而引起破音问题**。时钟不同…

windows中的tracert命令

在 Windows 操作系统中,tracert(全称 Trace Route)是一个用于确定 IP 数据包到达目标主机所经过的路径的命令行工具。它通过发送具有不同生存时间(TTL)的 ICMP(Internet Control Message Protocol&#xff…

2024“源鲁杯“高校网络安全技能大赛-Misc-WP

Round 1 hide_png 题目给了一张图片,flag就在图片上,不过不太明显,写个python脚本处理一下 from PIL import Image ​ # 打开图像并转换为RGB模式 img Image.open("./attachments.png").convert("RGB") ​ # 获取图像…

隨筆 Kafka中普通 Broker 如何收到最新的 epoch number

在 Kafka 集群中,当一个新的 Controller 当选之后,epoch number 会通过以下机制传递给其他 Broker。这个过程主要涉及 ZooKeeper 和新的 Controller 之间的交互。 1. 新的 Controller 更新 ZooKeeper 中的 epoch number: 当新的 Controller…

计算机网络中网络层发送报文时IP地址的变化,交换器的广播功能及相关设备功能

计算机网络中网络层发送报文时IP地址的变化 在计算机网络中,网络层负责数据的路由和转发,其中IP地址起着至关重要的作用。当报文在网络层发送时,目的IP地址和源IP地址的变化情况主要取决于报文所经过的网络设备和所应用的网络技术。 目的IP…

GCN+BiLSTM多特征输入时间序列预测(Pytorch)

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 GCNBiLSTM多特征输入时间序列预测(Pytorch) 可以做风电预测,光伏预测,寿命预测,浓度预测等。 Python代码,基于Pytorch编写 1.多特征输入单步预测…

【大数据学习 | kafka】kafuka的基础架构

1. kafka是什么 Kafka是由LinkedIn开发的一个分布式的消息队列。它是一款开源的、轻量级的、分布式、可分区和具有复制备份的(Replicated)、基于ZooKeeper的协调管理的分布式流平台的功能强大的消息系统。与传统的消息系统相比,KafKa能够很好…

MySQL-DQL练习题

文章目录 简介初始化表练习题 简介 本节简介: 主要是一些给出一些习题, 关于DQL查询相关的, DQL查询语句是最重要的SQL语句, 功能性最复杂, 功能也最强, 所以本节建议适合以及有了DQL查询基础的食用, 另外注意我们使用的是Navicat, SQL编辑的格式规范也是Navicat指定的默认格式…

Android 15: 探索未来的可能性

Android 15: 探索未来的可能性 随着技术的不断进步,我们的智能手机系统也在不断地进化。Android 15,作为谷歌最新推出的操作系统版本,带来了一系列令人兴奋的新特性和改进,让我们的数字生活更加丰富多彩。本文将带你一探Android 15的新特性,感受科技的魅力。 低光增强:…

鸿蒙实现相机拍照及相册选择照片

前言: 1.如果你的应用不是存储类型或者相机拍照类型,你就需要用 kit.CameraKit Api 实现相机拍照和相册选择照片功能,如果你不用这个的话,你使用 picker.PhotoViewPicker ,你就需要申请权限,那你提交应用审…

在linux上安装r-base和rpy2到conda环境

安装r-base(国外,可能需要很久>5min,或者需要多次尝试) conda install r-base 安装rpy2 pip install rpy2 在r-base下安装R包 在命令行输入R进入R语言环境,安装其他R包 R install.packages("mclust") 安装完成后退出R环…

《云原生安全攻防》-- K8s攻击案例:权限维持的攻击手法

在本节课程中,我们将一起深入了解K8s权限维持的攻击手法,通过研究这些攻击手法的技术细节,来更好地认识K8s权限维持所带来的安全风险。 在这个课程中,我们将学习以下内容: K8s权限维持:简单介绍K8s权限维持…

安装OpenResty

OpenResty OpenResty 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点: 具备Nginx的完整功能 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块…

Failed to fetch dynamically imported module

1. 这个错误是怎么触发的 假设你的网站域名是 www.xxx.com,你有三个路由 /home /about /dashboard 用户A 第一次访问 www.xxx.com/home 的时候,浏览器会自动缓存 /home 所需要的静态资源,然后访问 www.xxx.com/about,浏览器会再…