移情别恋c++ ദ്ദി˶ー̀֊ー́ ) ——15.红黑树

1.红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。

 

 2.红黑树的性质!!!!!

 1. 每个结点不是红色就是黑色

2. 根节点是黑色的 

3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 

4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点 

5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

3.红黑树节点的定义 

enum color
{RED,BLACK
};  //列举color的各种可能情况template<class K, class V>
struct RBTtreenode
{RBTtreenode<K, V>* _left;RBTtreenode<K, V>* _right;RBTtreenode<K, V>* _parent;pair<K, V> kv;color col;RBTtreenode(const pair<K, V>& _kv):_left(nullptr)     //左孩子, _right(nullptr)   //右孩子, _parent(nullptr)  //父亲, kv(_kv), col(RED){}
};

 4.红黑树结构

 为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了 与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft 域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:

5.红黑树的插入!!!!

 红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

5.1按照二叉搜索的树规则插入新节点

 

if (root == nullptr)
{root = new node(_kv);root->col = BLACK;//规定根必须是黑的return true;
}
node* parent = nullptr; //比bst多了一个parent
node* cur = root;       while (cur)
{parent = cur;if (cur->kv.first < _kv.first){cur = cur->_right;}else if (cur->kv.first > _kv.first){cur = cur->_left;}else{return false;}
}cur = new node(_kv);
cur->col = RED;//因为如果插入黑色的会使很多节点的一条路径上的黑色节点增多(相当于得罪了所有人),而插入红色则有可能只得罪父亲(如果父亲是红色的话)
if (parent->kv.first < _kv.first)
{parent->_right = cur;
}
else
{parent->_left = cur;
}
cur->_parent = parent;

5.2 检测新节点插入后,红黑树的性质是否造到破坏

 因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连 在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

 

1. 情况一: cur为红,p为红,g为黑,u存在且为红

解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

2.情况二(单旋+变色): cur为红,p为红,g为黑,u不存在/u存在且为黑  (左左和右右)

细分就是:(1)g->left==p,p->left==cur;左左

(2)g->right==p,p->right==cur;右右

 p为g的左孩子,cur为p的左孩子,则进行右单旋转;

相反, p为g的右孩子,cur为p的右孩子,则进行左单旋转

p、g变色--p变黑,g变红

3.情况三(双旋+变色): cur为红,p为红,g为黑,u不存在/u存在且为黑  (左右和右左)

 

 

细分就是:(1)g->left==p,p->right==cur;左右

(2)g->right==p,p->left==cur;右左

 p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;

相反, p为g的右孩子,cur为p的左孩子,则针对p做右单旋转 

则转换成了情况2!!!!!,然后再用情况2的旋转处理一下就行了

 针对每种情况进行相应的处理即可。

while (parent&&parent->col == RED)//parent为黑不需要调整,如果cur变成root,parent就不存在退出循环
{node* grandparent = parent->_parent;//祖父一定存在,因为只有根节点是没有祖父的,而根节点一定是黑色的if (parent==grandparent->_left){//      g//    p   unode* uncle = grandparent->_right;  //父亲在左则叔叔在右if (uncle && uncle->col == RED)     //情况一.如果叔叔存在且为红色{//变色parent->col = uncle->col = BLACK;grandparent->col = RED;//重置cur,parent,继续向上处理cur = grandparent;//变为祖父parent = cur->_parent;}else //叔叔不存在或为黑色,旋转加变色{//   g//  p// cif (cur == parent->_left)  //情况二.单旋{rotateR(grandparent);parent->col = BLACK;grandparent->col = RED;}//   g//  p//   celse      //情况三.cur==parent->_right,双旋{rotateL(parent);//经历一次左旋后变成情况二!!!!!!!!!!!(cur和parent换位置)rotateR(grandparent);cur->col = BLACK;grandparent->col = RED;}break;//调整一次就结束了,所以经历过旋转后不需要重置cur,parent,grandparent}}else{//      g//    u   p//node* uncle = grandparent->_left;  //父亲在右则叔叔在左if (uncle && uncle->col == RED){parent->col = uncle->col = BLACK;grandparent->col = RED;//cur = grandparent;parent = cur->_parent;}else{//    g//  u   p//        cif (cur == parent->_right){rotateL(grandparent);parent->col = BLACK;grandparent->col = RED;}else{//   g// u   p//    crotateR(parent);rotateL(grandparent);cur->col = BLACK;grandparent->col = RED;}break;//调整一次就结束了,所以经历过旋转后不需要重置cur,parent,grandparent}}

6.红黑树的验证 

红黑树的检测分为两步:

1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

2. 检测其是否满足红黑树的性质

 1.中序输出

void inorder()
{_inorder(root);
}void _inorder(node* root)
{if (root == nullptr)return;_inorder(root->_left);cout << root->kv.first << " ";_inorder(root->_right);
}

2.判断性质 (性质3和性质4)

bool check(node* it,int blacknum,int flag)
{if (it == nullptr){if (blacknum == flag)return true;elsereturn false;}else if (it->col == RED && it->_parent->col == RED)//十分巧妙,因为孩子的情况有很多,但父亲不是红就是黑,所以判断父亲更合适return false;else if (it->col == BLACK)blacknum++;return check(it->_left,blacknum,flag) && check(it->_right,blacknum,flag);
}bool isbalance()
{return _isbalance(root);
}bool _isbalance(node* root)
{if (root == nullptr)return true;else if (root->col == RED)return false;int blacknum = 0;int flag = 0;node* k = root;while (k){if (k->col == BLACK)flag++;k = k->_left;//这里十分巧妙,因为如果为红黑树,从某一节点到空的所有路径上的黑节点数量是一致的,所以可以先随便选一条路径,算出这一条路径上的黑节点数作为基准值,在由递归去和其他路径比较}return check(root,blacknum,flag);
}

7.红黑树的删除

 可参考:《算法导论》或者《STL源码剖析》

红黑树 - _Never_ - 博客园

8 红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(log_2 N),红黑树不追 求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。

 9 红黑树的应用

1. C++ STL库 -- map/set

2. Java 库

3. linux内核

4. 其他一些库

10.代码全览

rbt.h:

enum color
{RED,BLACK
};  //列举color的各种可能情况template<class K, class V>
struct RBTtreenode
{RBTtreenode<K, V>* _left;RBTtreenode<K, V>* _right;RBTtreenode<K, V>* _parent;pair<K, V> kv;color col;RBTtreenode(const pair<K, V>& _kv):_left(nullptr), _right(nullptr), _parent(nullptr), kv(_kv), col(RED){}
};template<class K, class V>
class RBTtree
{
public:typedef RBTtreenode<K, V> node;bool insert(const pair<K, V>& _kv){if (root == nullptr){root = new node(_kv);root->col = BLACK;//规定根必须是黑的return true;}node* parent = nullptr; //比bst多了一个parentnode* cur = root;       while (cur){parent = cur;if (cur->kv.first < _kv.first){cur = cur->_right;}else if (cur->kv.first > _kv.first){cur = cur->_left;}else{return false;}}cur = new node(_kv);cur->col = RED;//因为如果插入黑色的会使很多节点的一条路径上的黑色节点增多(相当于得罪了所有人),而插入红色则有可能只得罪父亲(如果父亲是红色的话)if (parent->kv.first < _kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//开始调整while (parent&&parent->col == RED)//parent为黑不需要调整,如果cur变成root,parent就不存在退出循环{node* grandparent = parent->_parent;//祖父一定存在,因为只有根节点是没有祖父的,而根节点一定是黑色的if (parent==grandparent->_left){//      g//    p   unode* uncle = grandparent->_right;  //父亲在左则叔叔在右if (uncle && uncle->col == RED)     //情况一.如果叔叔存在且为红色{//变色parent->col = uncle->col = BLACK;grandparent->col = RED;//重置cur,parent,继续向上处理cur = grandparent;//变为祖父parent = cur->_parent;}else //叔叔不存在或为黑色,旋转加变色{//   g//  p// cif (cur == parent->_left)  //情况二.单旋{rotateR(grandparent);parent->col = BLACK;grandparent->col = RED;}//   g//  p//   celse      //情况三.cur==parent->_right,双旋{rotateL(parent);//经历一次左旋后变成情况二!!!!!!!!!!!(cur和parent换位置)rotateR(grandparent);cur->col = BLACK;grandparent->col = RED;}break;//调整一次就结束了,所以经历过旋转后不需要重置cur,parent,grandparent}}else{//      g//    u   p//node* uncle = grandparent->_left;  //父亲在右则叔叔在左if (uncle && uncle->col == RED){parent->col = uncle->col = BLACK;grandparent->col = RED;//cur = grandparent;parent = cur->_parent;}else{//    g//  u   p//        cif (cur == parent->_right){rotateL(grandparent);parent->col = BLACK;grandparent->col = RED;}else{//   g// u   p//    crotateR(parent);rotateL(grandparent);cur->col = BLACK;grandparent->col = RED;}break;//调整一次就结束了,所以经历过旋转后不需要重置cur,parent,grandparent}}}//1.如果parent和uncle都为RED,则可以一起变黑// 2.parent为黑不处理// 3.uncle为黑或不存在,parent为红,旋转+变色root->col = BLACK;//最后以防万一让根变为黑return true;}void rotateL(node* parent)//左旋,(新节点插入到较高右子树的右侧)//   1.右右{node* subr = parent->_right;node* subrl = subr->_left;parent->_right = subrl;subr->_left = parent;node* ppnode = parent->_parent;parent->_parent = subr;if (subrl) //subrl可能为空!!!!!!!{subrl->_parent = parent;}if (parent == root) //即如果parent->_parent==nullptr{root = subr;subr->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subr;}else if (ppnode->_right == parent){ppnode->_right = subr;}subr->_parent = ppnode;}}void rotateR(node* parent)//右旋,(新节点插入到较高左子树的左侧)//   2.左左{node* subl = parent->_left;node* sublr = subl->_right;parent->_left = sublr;if (sublr)               //sublr可能为空!!!!!!!sublr->_parent = parent;node* ppnode = parent->_parent;subl->_right = parent;parent->_parent = subl;if (root == parent){root = subl;subl->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subl;}else if (ppnode->_right == parent){ppnode->_right = subl;}subl->_parent = ppnode;}}void inorder(){_inorder(root);}void _inorder(node* root){if (root == nullptr)return;_inorder(root->_left);cout << root->kv.first << " ";_inorder(root->_right);}bool check(node* it,int blacknum,int flag){if (it == nullptr){if (blacknum == flag)return true;elsereturn false;}else if (it->col == RED && it->_parent->col == RED)//十分巧妙,因为孩子的情况有很多,但父亲不是红就是黑,所以判断父亲更合适return false;else if (it->col == BLACK)blacknum++;return check(it->_left,blacknum,flag) && check(it->_right,blacknum,flag);}bool isbalance(){return _isbalance(root);}bool _isbalance(node* root){if (root == nullptr)return true;else if (root->col == RED)return false;int blacknum = 0;int flag = 0;node* k = root;while (k){if (k->col == BLACK)flag++;k = k->_left;//这里十分巧妙,因为如果为红黑树,从某一节点到空的所有路径上的黑节点数量是一致的,所以可以先随便选一条路径,算出这一条路径上的黑节点数作为基准值,在由递归去和其他路径比较}return check(root,blacknum,flag);}private:node* root = nullptr;
};

test.cpp:

#include<iostream>
using namespace std;#include"RBT.h"int main()
{int arr[] = { 790,760,969,270,31,424,377,24,702 };//int arr[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };RBTtree<int, int> it;for (auto i : arr){it.insert(make_pair(i, i));}it.inorder();cout << endl << it.isbalance() << endl;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/55350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

k8s搭建双主的mysql8集群---无坑

《k8s搭建一主三从的mysql8集群---无坑-CSDN博客》通过搭建一主三从&#xff0c;我们能理解到主节点只有1个&#xff0c;那么承担增删改主要还是主节点&#xff0c;如果你在从节点上去操作增删改操作&#xff0c;数据不会同步到其他节点。本章我们将实现多主&#xff08;双主&a…

YOLO11关键改进与网络结构图

目录 前言&#xff1a;一、YOLO11的优势二、YOLO11网络结构图三、C3k2作用分析四、总结 前言&#xff1a; 对于一个科研人来说&#xff0c;发表论文水平的高低和你所掌握的信息差有着极大的关系&#xff0c;所以趁着YOLO11刚刚发布&#xff0c;趁热了解&#xff0c;先人一步对…

Linux-基础实操篇-组管理和权限管理(上)

Linux 组基本介绍 在 linux 中的每个用户必须属于一个组&#xff0c;不能独立于组外。在 linux 中每个文件 有所有者、所在组、其它组的概念。 用户和组的基本概念&#xff1a; 用户名&#xff1a;用来识别用户的名称&#xff0c;可以是字母、数字组成的字符串&#xff0…

(Kafka源码五)Kafka服务端处理消息

Kafka 服务端&#xff08;Broker&#xff09;采用 Reactor 的架构思想&#xff0c;通过1 个 Acceptor&#xff0c;N 个 Processor(N默认为3)&#xff0c;M 个 KafkaRequestHandler&#xff08;M默认为8&#xff09;&#xff0c;来处理客户端请求&#xff0c;这种模式结合了多线…

kubeadm部署k8s集群,版本1.23.6;并设置calico网络BGP模式通信,版本v3.25--未完待续

1.集群环境创建 三台虚拟机&#xff0c;一台master节点&#xff0c;两台node节点 (根据官网我们知道k8s 1.24版本之后就需要额外地安装cri-dockerd作为桥接才能使用Docker Egine。经过尝试1.24后的版本麻烦事很多&#xff0c;所以此处我们选择1.23.6版本) 虚拟机环境创建参考…

YOLOv11改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量

一、本文介绍 本文记录的是改进YOLOv11的损失函数&#xff0c;将其替换成Shape-IoU。现有边界框回归方法通常考虑真实GT&#xff08;Ground Truth&#xff09;框与预测框之间的几何关系&#xff0c;通过边界框的相对位置和形状计算损失&#xff0c;但忽略了边界框本身的形状和…

关于malloc,calloc,realloc

1.引用的头文件介绍&#xff1a; 这三个函数需要调用<stdlib.h>这个头文件 2.malloc 2.1 函数简单介绍&#xff1a; 首先这个函数是用于动态开辟一个空间&#xff0c;例如数组在c99标准之前是无法arr[N]的&#xff0c;这个时候就需要使用malloc去进行处理&#xff0c…

互斥量mutex、锁、条件变量和信号量相关原语(函数)----很全

线程相关知识可以看这里: 线程控制原语(函数)的介绍-CSDN博客 进程组、会话、守护进程和线程的概念-CSDN博客 1.同步概念 所谓同步&#xff0c;即同时起步&#xff0c;协调一致。不同的对象&#xff0c;对“同步”的理解方式略有不同。如&#xff0c;设备同步&#xff0c;是…

【C语言指南】数据类型详解(上)——内置类型

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《C语言指南》 期待您的关注 目录 引言 1. 整型&#xff08;Integer Types&#xff09; 2. 浮点型&#xff08;Floating-Point …

计算机毕业设计 基于Python高校岗位招聘和分析平台的设计与实现 Python+Django+Vue 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

YOLOv8改进 ,YOLOv8改进主干网络为华为的轻量化架构GhostNetV1

摘要 摘要:将卷积神经网络(CNN)部署在嵌入式设备上是困难的,因为嵌入式设备的内存和计算资源有限。特征图的冗余是成功的 CNN 的一个重要特征,但在神经网络架构设计中很少被研究。作者提出了一种新颖的 Ghost 模块,用于通过廉价操作生成更多的特征图。基于一组内在特征图…

力扣(leetcode)每日一题 983 最低票价 |动态规划

983. 最低票价 题干 在一个火车旅行很受欢迎的国度&#xff0c;你提前一年计划了一些火车旅行。在接下来的一年里&#xff0c;你要旅行的日子将以一个名为 days 的数组给出。每一项是一个从 1 到 365 的整数。 火车票有 三种不同的销售方式 &#xff1a; 一张 为期一天 的通…

Android 安卓内存安全漏洞数量大幅下降的原因

谷歌决定使用内存安全的编程语言 Rust 向 Android 代码库中写入新代码&#xff0c;尽管旧代码&#xff08;用 C/C 编写&#xff09;没有被重写&#xff0c;但内存安全漏洞却大幅减少。 Android 代码库中每年发现的内存安全漏洞数量&#xff08;来源&#xff1a;谷歌&#xff09…

Spring Boot实现足球青训俱乐部管理自动化

4 系统设计 4.1 系统架构设计 B/S系统架构是本系统开发采用的结构模式&#xff0c;使用B/S模式开发程序以及程序后期维护层面需要的经济成本是很低的&#xff0c;用户能够承担得起。使用这样的模式开发&#xff0c;用户使用起来舒心愉悦&#xff0c;不会觉得别扭&#xff0c;操…

WebSocket消息防丢ACK和心跳机制对信息安全性的作用及实现方法

WebSocket消息防丢ACK和心跳机制对信息安全性的作用及实现方法 在现代即时通讯&#xff08;IM&#xff09;系统和实时通信应用中&#xff0c;WebSocket作为一种高效的双向通信协议&#xff0c;得到了广泛应用。然而&#xff0c;在实际使用中&#xff0c;如何确保消息的可靠传输…

Docker笔记-Docker磁盘空间清理

无用的容器指的是已经停止运行且处于非活跃状态的容器。无用的镜像包括没有被任何容器使用的镜像&#xff0c;或者是被标记为"<none>"的镜像&#xff0c;通常是构建过程中产生的无标签镜像。 通过执行 docker container ls -a 和 docker image ls -a 命令&…

LiveNVR监控流媒体Onvif/RTSP功能-支持电子放大拉框放大直播视频拉框放大录像视频流拉框放大电子放大

LiveNVR监控流媒体Onvif/RTSP功能-支持电子放大拉框放大直播视频拉框放大录像视频流拉框放大电子放大 1、视频广场2、录像回看3、RTSP/HLS/FLV/RTMP拉流Onvif流媒体服务 1、视频广场 视频广场 -》播放 &#xff0c;左键单击可以拉取矩形框&#xff0c;放大选中的范围&#xff…

2024年9月中国干旱监测报告(FYDI-2.0指数)

目录 引言 旱情监测与分析 资料来源 引言 2024年9月&#xff0c;北方的降水逐渐增多&#xff0c;进入华西秋雨集中期&#xff0c;从青藏高原北部一直延伸到东北多地&#xff0c;常出现大范围的云带&#xff0c;西北地区的降雨强度较大。南方地区降水分布不均&#xff0c;受…

【Python报错已解决】error: subprocess-exited-with-error

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 专栏介绍 在软件开发和日常使用中&#xff0c;BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…

025.Oracle_DBMS_job定时任务

课 程 推 荐我 的 个 人 主 页&#xff1a;&#x1f449;&#x1f449; 失心疯的个人主页 &#x1f448;&#x1f448;入 门 教 程 推 荐 &#xff1a;&#x1f449;&#x1f449; Python零基础入门教程合集 &#x1f448;&#x1f448;虚 拟 环 境 搭 建 &#xff1a;&#x1…