互斥量mutex、锁、条件变量和信号量相关原语(函数)----很全

线程相关知识可以看这里:

线程控制原语(函数)的介绍-CSDN博客

进程组、会话、守护进程和线程的概念-CSDN博客

1.同步概念

所谓同步,即同时起步,协调一致。不同的对象,对“同步”的理解方式略有不同。如,设备同步,是指在两个设备之间规定一个共同的时间参考;数据库同步,是指让两个或多个数据库内容保持一致,或者按需要部分保持一致;文件同步,是指让两个或多个文件夹里的文件保持一致。等等

然而,编程中、通信中所说的同步与生活中大家印象中的同步概念略有差异。“同”字应是指协同、协助、互相配合。主旨在协同步调,按预定的先后次序运行。

1.1 线程同步

同步即协同步调,按预定的先后次序运行。

线程同步,指一个线程发出某一功能调用时,在没有得到结果之前,该调用不返回。同时其它线程为保证数据一致性,不能调用该功能。

举例1:银行存款 5000。你去柜台,存折:取3000;你妈同时去提款机拿你的卡:取 3000。剩余:2000(你妈先取完了,钱变2000,柜台小姐给你取完后误以为还是5000,给你修改成2000)

举例2: 内存中100字节,线程T1欲填入全1, 线程T2欲填入全0。但如果T1执行了50个字节失去cpu,T2执行,会将T1写过的内容覆盖。当T1再次获得cpu继续从失去cpu的位置向后写入1,当执行结束,内存中的100字节,既不是全1,也不是全0。

产生的现象叫做“与时间有关的错误”(time related)。为了避免这种数据混乱,线程需要同步,讲究先后顺序。

“同步”的目的,是为了避免数据混乱,解决与时间有关的错误。实际上,不仅线程间需要同步,进程间、信号间等等都需要同步机制。

因此,所有“多个控制流,共同操作一个共享资源”的情况,都需要同步。

1.2 数据混乱原因

1. 资源共享(独享资源则不会)

2. 调度随机(意味着数据访问会出现竞争)

3. 线程间缺乏必要的同步机制。

以上3点中,前两点不能改变,欲提高效率,传递数据,资源必须共享。只要共享资源,就一定会出现竞争。只要存在竞争关系,数据就很容易出现混乱。

所以只能从第三点着手解决。使多个线程在访问共享资源的时候,出现互斥。

2.互斥量mutex

Linux中提供一把互斥锁mutex(也称之为互斥量)。

每个线程在对资源操作前都尝试先加锁,成功加锁才能操作,操作结束解锁。

资源还是共享的,线程间也还是竞争的,

但通过“锁”就将资源的访问变成互斥操作,而后与时间有关的错误也不会再产生了。

但,应注意:同一时刻,只能有一个线程持有该锁。

当A线程对某个全局变量加锁访问,B在访问前尝试加锁,拿不到锁,B阻塞。C线程不去加锁,而直接访问该全局变量,依然能够访问,但会出现数据混乱。

所以,互斥锁实质上是操作系统提供的一把“建议锁”(又称“协同锁”),建议程序中有多线程访问共享资源的时候使用该机制。但,并没有强制限定

因此,即使有了mutex,如果有线程不按规则来访问数据,依然会造成数据混乱。

主要应用函数

pthread_mutex_init函数

pthread_mutex_destroy函数

pthread_mutex_lock函数

pthread_mutex_trylock函数

pthread_mutex_unlock函数

以上5个函数的返回值都是:成功返回0, 失败返回错误号。

pthread_mutex_t 类型,其本质是一个结构体。为简化理解,应用时可忽略其实现细节,简单当成整数看待。

pthread_mutex_t mutex; 变量mutex只有两种取值1、0。

pthread_mutex_init函数

初始化一个互斥锁(互斥量) ---> 初值可看作1
int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
参1:传出参数,调用时应传 &mutex
restrict关键字:只用于限制指针,告诉编译器,所有修改该指针指向内存中内容的操作,只能通过本指针完成。不能通过除本指针以外的其他变量或指针修改参2:互斥量属性。是一个传入参数,通常传NULL,选用默认属性(线程间共享)。 参APUE.12.4同步属性1. 静态初始化:如果互斥锁 mutex 是静态分配的(定义在全局,或加了static关键字修饰),可以直接使用宏进行初始化。e.g.  pthead_mutex_t muetx = PTHREAD_MUTEX_INITIALIZER;2. 动态初始化:局部变量应采用动态初始化。e.g.  pthread_mutex_init(&mutex, NULL)

pthread_mutex_destory函数

销毁一个互斥锁
int pthread_mutex_destroy(pthread_mutex_t *mutex);

pthread_mutex_lock函数

加锁。可理解为将mutex--(或 -1),操作后mutex的值为0。
int pthread_mutex_lock(pthread_mutex_t *mutex);
成功muter--加上锁,失败阻塞线程等待锁的释放

pthread_mutex_unlock函数

解锁。可理解为将mutex ++(或 +1),操作后mutex的值为1。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
唤醒阻塞在锁上的线程,并++

pthread_mutex_trylock函数

尝试加锁
int pthread_mutex_trylock(pthread_mutex_t *mutex);
成功muter--并上锁,失败返回不阻塞并设置错误号EBUSY

3.加锁与解锁

lock和unlock

lock尝试加锁,如果加锁不成功,线程阻塞,阻塞到持有该互斥量的其他线程解锁为止。

unlock主动解锁函数,同时将阻塞在该锁上的所有线程全部唤醒,至于哪个线程先被唤醒,取决于优先级、调度。默认:先阻塞、先唤醒。

例如:T1 T2 T3 T4 使用一把mutex锁。T1加锁成功,其他线程均阻塞,直至T1解锁。T1解锁后,T2 T3 T4均被唤醒,并自动再次尝试加锁。

可假想mutex锁 init成功初值为1。lock 功能是将mutex--。而unlock则将mutex++。

lock和trylock

lock加锁失败会阻塞,等待锁释放。

trylock加锁失败直接返回错误号(如:EBUSY),不阻塞。

4.加锁步骤测试

看如下程序:该程序是非常典型的,由于共享、竞争而没有加任何同步机制,导致产生于时间有关的错误,造成数据混乱:

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>void *tfn(void *arg)
{srand(time(NULL));while (1) {printf("hello ");sleep(rand() % 3);/*模拟长时间操作共享资源,导致cpu易主,产生与时间有关的错误*///一sleep线程就会挂起,一挂起CPU就会交给其它线程或者进程使用//因此主线程和子线程并不是有规则的打出各自的hello world和HELLO WORLDprintf("world\n");sleep(rand() % 3);}return NULL;
}
int main(void)
{pthread_t tid;srand(time(NULL));pthread_create(&tid, NULL, tfn, NULL);while (1) {printf("HELLO ");sleep(rand() % 3);printf("WORLD\n");sleep(rand() % 3);}pthread_join(tid, NULL);return 0;
} 

【练习】:修改该程序,使用mutex互斥锁进行同步。

1.定义全局互斥量,初始化init(&m, NULL)互斥量,添加对应的destry

2.两个线程while中,两次printf前后,分别加lock和unlock

3.将unlock挪至第二个sleep后,发现交替现象很难出现。

  • 线程在操作完共享资源后本应该立即解锁,但修改后,线程抱着锁睡眠。睡醒解锁后又立即加锁,这两个库函数本身不会阻塞。
  • 所以在这两行代码之间失去cpu的概率很小。因此,另外一个线程很难得到加锁的机会。

4.main 中加flag = 5 将flg在while中-- 这时,主线程输出5次后试图销毁锁,但子线程未将锁释放,无法完成。

main 中加pthread_cancel()将子线程取消。

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include<string.h>Pthread_mutex_t mutex;  //定义一把互斥锁,可以想象成常数字void *tfn(void *arg)
{srand(time(NULL));while (1) {pthread_muter_lock(&mutex);  //2.加锁printf("hello ");sleep(rand() % 3);/*模拟长时间操作共享资源,导致cpu易主,产生与时间有关的错误*/printf("world\n");pthread_muter_unlock(&muter);  //3.解锁sleep(rand() % 3);  //不在这个sleep后面再解锁就是因为让子进程挂起,父进程有机会去轮片让cpu进行运行}return NULL;
}
int main(void)
{pthread_t tid;srand(time(NULL));int ret = pthread_mutex_init(&mutex, NULL);  //1.初始化互斥锁,在线程创建前;可以认为,锁muter的值为1if(ret != 0){fprintf(stderr, "mutex init error:%s\n", strerror(ret));exit(1);    }pthread_create(&tid, NULL, tfn, NULL);while (1) {pthread_muter_lock(&mutex);  //2.加锁, 可以想象锁muter--(1 --> 0)printf("HELLO ");sleep(rand() % 3);printf("WORLD\n");pthread_muter_unlock(&muter);  //3.解锁, 可以想象锁muter++( 0 --> 1)sleep(rand() % 3);  //同理,不将3移到该行后面也是让子线程有机会执行}pthread_join(tid, NULL);int ret = pthread_mutex_destory(&mutex);   //4.销毁锁if(ret != 0){fprintf(stderr, "mutex destory error:%s\n", strerror(ret));exit(1);    }return 0;
} 

结论:

在访问共享资源前加锁,访问结束后立即解锁。锁的“粒度”应越小越好。(访问共享数据前加锁,访问结束后立即解锁)

5.死锁

是使用锁不恰当而导致的现象

1. 线程试图对同一个互斥量A 加锁两次。

2. 线程1拥有A锁,请求获得B锁;线程2拥有B锁,请求获得A锁。两个事务分别想拿到对方持有的锁,互相等待,于是产生死锁

6.读写锁

与互斥量类似,但读写锁允许更高的并行性。其特性为:写独占,读共享。

读写锁状态:

特别强调:读写锁只有一把,但其具备两种状态:

1. 读模式下加锁状态 (读锁)

2. 写模式下加锁状态 (写锁)

读写锁特性:

1.读写锁是 “模式加锁” 时, 解锁前,所有对该锁加锁的线程都会被阻塞。排他锁

2.读写锁是 “模式加锁” 时, 如果线程以读模式 对其加锁会成功;如果线程写以模式加锁会阻塞。共享锁

3.读写锁是 “读模式加锁” 时, 既有试图以写模式加锁的线程,也有试图以读模式加锁的线程。那么读写锁会阻塞随后的读模式锁请求。优先满足写模式锁。读锁、写锁并行阻塞,写锁优先级高

读写锁也叫共享-独占锁。当xa读写锁以读模式锁住时,它是以共享模式锁住的;当它以写模式锁住时,它是以独占模式锁住的。写独占、读共享。

读写锁非常适合于对数据结构读的次数远大于写的情况。

相较于互斥量而言,读写锁在读线程多的时候,能够提高访问效率,同时读

主要应用函数

pthread_rwlock_init函数
pthread_rwlock_destroy函数
pthread_rwlock_rdlock函数  
pthread_rwlock_wrlock函数
pthread_rwlock_tryrdlock函数
pthread_rwlock_trywrlock函数
pthread_rwlock_unlock函数以上7 个函数的返回值都是:成功返回0, 失败直接返回错误号。
pthread_rwlock_t类型用于定义一个读写锁变量。
pthread_rwlock_t rwlock;

pthread_rwlock_init函数

初始化一把读写锁
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
参2:attr表读写锁属性,通常使用默认属性,传NULL即可。

pthread_rwlock_destroy函数

销毁一把读写锁
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

pthread_rwlock_rdlock函数

以读方式请求读写锁。(常简称为:请求读锁)
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

pthread_rwlock_wrlock函数

以写方式请求读写锁。(常简称为:请求写锁)
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

pthread_rwlock_unlock函数

解锁
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
pthread_rwlock_tryrdlock函数
非阻塞以读方式请求读写锁(非阻塞请求读锁)
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

pthread_rwlock_trywrlock函数

非阻塞以写方式请求读写锁(非阻塞请求写锁)
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

读写锁示例

看如下示例,同时有多个线程对同一全局数据读、写操作。
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>int counter;
pthread_rwlock_t rwlock;/* 3个线程不定时写同一全局资源,5个线程不定时读同一全局资源 */
void *th_write(void *arg)
{int t, i = (int)arg;while (1) {pthread_rwlock_wrlock(&rwlock);t = counter;usleep(1000);printf("=======write %d: %lu: counter=%d ++counter=%d\n", i, pthread_self(), t, ++counter);pthread_rwlock_unlock(&rwlock);usleep(10000);}return NULL;
}
void *th_read(void *arg)
{int i = (int)arg;while (1) {pthread_rwlock_rdlock(&rwlock);printf("----------------------------read %d: %lu: %d\n", i, pthread_self(), counter);pthread_rwlock_unlock(&rwlock);usleep(2000);}return NULL;
}
int main(void)
{int i;pthread_t tid[8];pthread_rwlock_init(&rwlock, NULL);for (i = 0; i < 3; i++)pthread_create(&tid[i], NULL, th_write, (void *)i);for (i = 0; i < 5; i++)pthread_create(&tid[i+3], NULL, th_read, (void *)i);for (i = 0; i < 8; i++)pthread_join(tid[i], NULL);pthread_rwlock_destroy(&rwlock);return 0;
}

7.条件变量

条件变量本身不是锁!但它也可以造成线程阻塞。通常与互斥锁配合使用。给多线程提供一个会合的场所。

主要应用函数

pthread_cond_init函数
pthread_cond_destroy函数
pthread_cond_wait函数
pthread_cond_timedwait函数
pthread_cond_signal函数
pthread_cond_broadcast函数以上6 个函数的返回值都是:成功返回0, 失败直接返回错误号。
pthread_cond_t类型用于定义条件变量
pthread_cond_t cond;

pthread_cond_init函数

初始化一个条件变量

int pthread_cond_init(pthread_cond_t *restrict cond, const pthread_condattr_t *restrict attr);
参2:attr表条件变量属性,通常为默认值,传NULL即可
也可以使用静态初始化的方法,初始化条件变量:
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_cond_destroy函数

销毁一个条件变量
int pthread_cond_destroy(pthread_cond_t *cond);

pthread_cond_wait函数

阻塞等待一个条件变量
int pthread_cond_wait
(pthread_cond_t *restrict cond, 
pthread_mutex_t *restrict mutex);mutex:需要创建一把互斥锁

函数作用:

1.阻塞等待条件变量cond(参1)满足

2.释放已掌握的互斥锁(解锁互斥量)相当于pthread_mutex_unlock(&mutex);

1.2.两步为一个原子操作。

3.当阻塞等待的条件变量被唤醒(pthread_cond_siganl / pthread_cond_broadcast),pthread_cond_wait函数返回时,解除阻塞并重新申请获取互斥锁pthread_mutex_lock(&mutex);

pthread_cond_timedwait函数

pthread_cond_timedwait函数
限时等待一个条件变量
int pthread_cond_timedwait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex, const struct timespec *restrict abstime);restrict关键字:只用于限制指针,告诉编译器,所有修改该指针指向内存中内容的操作,只能通过本指针完成。不能通过除本指针以外的其他变量或指针修改参3:参看man sem_timedwait函数,查看struct timespec结构体。
struct timespec {
time_t tv_sec;/* seconds */ 秒
long   tv_nsec;/* nanosecondes*/ 纳秒
}
形参abstime:绝对时间。
如:time(NULL)返回的就是绝对时间。而alarm(1)是相对时间,相对当前时间定时1秒钟。struct timespec t = {1, 0};pthread_cond_timedwait (&cond, &mutex, &t); 只能定时到 1970年1月1日 00:00:01秒(早已经过去) 
正确用法:time_t cur = time(NULL); 获取当前时间。struct timespec t;定义timespec 结构体变量tt.tv_sec = cur+1; 定时1秒pthread_cond_timedwait (&cond, &mutex, &t); 传参在讲解setitimer函数时我们还提到另外一种时间类型:struct timeval {time_t      tv_sec;  /* seconds */ 秒suseconds_t tv_usec; /* microseconds */ 微秒};

pthread_cond_signal函数

唤醒至少一个阻塞在条件变量上的线程
int pthread_cond_signal(pthread_cond_t *cond);
也就是一个线程调用了pthread_cond_wait后,锁释放,阻塞等待,需要使用pthread_cond_signal或者pthread_cond_broadcast将其阻塞等待的线程唤醒,解除阻塞的同时会申请获取锁(上锁)

pthread_cond_broadcast函数

唤醒全部阻塞在条件变量上的线程
int pthread_cond_broadcast(pthread_cond_t *cond);

生产者消费者条件变量模型

线程同步典型的案例即为生产者消费者模型,而借助条件变量来实现这一模型,是比较常见的一种方法。假定有两个线程,一个模拟生产者行为,一个模拟消费者行为。两个线程同时操作一个共享资源(一般称之为汇聚),生产向其中添加产品,消费者从中消费掉产品。

看如下示例,使用条件变量模拟生产者、消费者问题:
//要注意的是,针对的是共享数据区,锁只有一把!!!!!!!
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>/*链表作为共享数据,需要被互斥量保护*/
struct msg {struct msg *next;int num;
};
struct msg *head;//静态初始化 一个条件变量 和 一个互斥量
pthread_cond_t has_product = PTHREAD_COND_INITIALIZER;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;void *consumer(void *p)
{struct msg *mp;for (;;) { //for循环模拟的是消费者想买多个东西pthread_mutex_lock(&lock); //先上锁后条件变量判断while (head == NULL) {           //头指针为空,说明没有节点   // 可以为if吗,不行//当多个线程消费者等待,此时生产者放入了一个数据唤醒了全部的消费者,其中一个消费者A抢到了释放锁获取了唯一一个数据//退出while循环,因为生产者放入东西了,全局变量数据区head不为空了//然后又上锁(wait函数被唤醒会自动上锁),并且A的线程执行完会将head置为NULL,也就是上一个结点,消费者A执行完释放锁(34行)//数据区变为空,若其它阻塞的其中一个消费者B抢到了上锁的机会而不是生产者抢到去进行生产了,如果为if就没法再循环一次检查数据区是否为空//消费者B没法阻塞等待,直接进去买东西,会导致B没法买到东西;若为while就是再循环一次判断重新调用wait函数阻塞等待,将抢到的锁释放回去给生产者拿//也就是while循环就是为了当有多个消费者的时候,若数据区被一个消费者读完了,有其它正在等待的消费者抢到了上锁机会需要再循环一次判断下head是否为空,防止跑空进入了数据区pthread_cond_wait(&has_product, &lock);//会阻塞等待的同时释放该线程拿到的锁,直到被唤醒,视图重新拿回该线程的锁}mp = head;      head = mp->next;  //模拟消费掉一个产品,同时置空,与上面的while循环对应pthread_mutex_unlock(&lock);printf("-Consume ---%d\n", mp->num);free(mp);sleep(rand() % 5);}
}
void *producer(void *p)
{struct msg *mp;while (1) {mp = malloc(sizeof(struct msg));mp->num = rand() % 1000 + 1;        //模拟生产一个产品printf("-Produce ---%d\n", mp->num);pthread_mutex_lock(&lock);  //如果消费者调用了pthread_cond_wait阻塞等待,锁会释放,这里就能上锁成功mp->next = head;head = mp;pthread_mutex_unlock(&lock);  //记得释放锁,让解除阻塞的消费者被唤醒的同时能申请上锁pthread_cond_signal(&has_product);  //将等待在该条件变量上的一个线程唤醒//如果是多个消费者,可以用broadcast全部唤醒,谁先上锁就谁先抢到东西sleep(rand() % 5);}
}
int main(int argc, char *argv[])
{pthread_t pid, cid;srand(time(NULL));pthread_create(&pid, NULL, producer, NULL);  //设置生产者线程pthread_create(&cid, NULL, consumer, NULL);  //设置消费者线程pthread_join(pid, NULL);pthread_join(cid, NULL);return 0;
}

条件变量的优点

相较于mutex而言,条件变量可以减少竞争。

如直接使用mutex,除了生产者、消费者之间要竞争互斥量以外,消费者之间也需要竞争互斥量,但如果汇聚(链表)中没有数据,消费者之间竞争互斥锁是无意义的。有了条件变量机制以后,只有生产者完成生产,才会引起消费者之间的竞争。提高了程序效率。

8.信号量

相当于初始化值为N的互斥量(互斥量初始化值为1),N值表示可以同时访问共享数据区的线程数。线程和进程间都可用

sem_init函数
sem_destroy函数
sem_wait函数
sem_trywait函数
sem_timedwait函数
sem_post函数
以上6 个函数的返回值都是:成功返回0, 失败返回-1,同时设置errno。(注意,它们没有pthread前缀)
sem_t类型,本质仍是结构体。但应用期间可简单看作为整数,忽略实现细节(类似于使用文件描述符)。 
sem_t sem; 规定信号量sem不能 < 0。头文件<semaphore.h>

信号量基本操作

sem_wait:   1. 信号量大于0,则信号量--,(类比pthread_mutex_lock)|			2. 信号量等于0,造成线程阻塞
对应|
sem_post:      将信号量++,同时唤醒阻塞在信号量上的线程(类比pthread_mutex_unlock)

但,由于sem_t的实现对用户隐藏,所以所谓的++、--操作只能通过函数来实现,而不能直接++、--符号。

信号量的初值,决定了占用信号量的线程的个数。

sem_init函数

初始化一个信号量
int sem_init(sem_t *sem, int pshared, unsigned int value);
参1:sem信号量
参2:pshared取0用于线程间同步;取非0(一般为1)用于进程间同步
参3:value指定信号量初值(N值)

sem_destroy函数

销毁一个信号量
int sem_destroy(sem_t *sem);

sem_wait函数

给信号量加锁 -- 
int sem_wait(sem_t *sem);

sem_post函数

给信号量解锁 ++
int sem_post(sem_t *sem);

sem_trywait函数

尝试对信号量加锁 --(与sem_wait的区别类比lock和trylock)
int sem_trywait(sem_t *sem);

sem_timedwait函数

限时尝试对信号量加锁 --
int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
参2:abs_timeout采用的是绝对时间。
定时1秒:
time_t cur = time(NULL); 获取当前时间。struct timespec t;定义timespec 结构体变量t
t.tv_sec = cur+1; 定时1秒
t.tv_nsec = t.tv_sec +100; sem_timedwait(&sem, &t); 传参

生产者消费者信号量模型

【练习】:使用信号量完成线程间同步,模拟生产者,消费者问题。

分析:

规定:如果□中有数据,生产者不能生产,只能阻塞。

如果□中没有数据,消费者不能消费,只能等待数据。

定义两个信号量:S满 = 0, S空 = 1 (S满代表满格的信号量,S空表示空格的信号量,程序起始,格子一定为空)

所以有:
T生产者主函数 {T消费者主函数 {sem_wait(S空);sem_wait(S满);生产....     消费....sem_post(S满);     sem_post(S空);}}

假设:线程到达的顺序是:T生、T生、T消。

那么:T生1 到达,将S空-1,生产,将S满+1

T生2 到达,S空已经为0, 阻塞

T消 到达,将S满-1,消费,将S空+1

三个线程到达的顺序是:T生1、T生2、T消。而执行的顺序是T生1、T消、T生2

这里,S空 表示空格子的总数,代表可占用信号量的线程总数-->1。其实这样的话,信号量就等同于互斥锁。

但,如果S空=2、3、4……就不一样了,该信号量同时可以由多个线程占用,不再是互斥的形式。因此我们说信号量是互斥锁的加强版。

【推演练习】:理解上述模型,推演,如果是两个消费者,一个生产者,是怎么样的情况。

【作业】:结合生产者消费者信号量模型,揣摩sem_timedwait函数作用。编程实现,一个线程读用户输入, 另一个线程打印“hello world”。如果用户无输入,则每隔5秒向屏幕打印一个“hello world”;如果用户有输入,立刻打印“hello world”到屏幕。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/55337.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言指南】数据类型详解(上)——内置类型

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《C语言指南》 期待您的关注 目录 引言 1. 整型&#xff08;Integer Types&#xff09; 2. 浮点型&#xff08;Floating-Point …

计算机毕业设计 基于Python高校岗位招聘和分析平台的设计与实现 Python+Django+Vue 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

YOLOv8改进 ,YOLOv8改进主干网络为华为的轻量化架构GhostNetV1

摘要 摘要:将卷积神经网络(CNN)部署在嵌入式设备上是困难的,因为嵌入式设备的内存和计算资源有限。特征图的冗余是成功的 CNN 的一个重要特征,但在神经网络架构设计中很少被研究。作者提出了一种新颖的 Ghost 模块,用于通过廉价操作生成更多的特征图。基于一组内在特征图…

力扣(leetcode)每日一题 983 最低票价 |动态规划

983. 最低票价 题干 在一个火车旅行很受欢迎的国度&#xff0c;你提前一年计划了一些火车旅行。在接下来的一年里&#xff0c;你要旅行的日子将以一个名为 days 的数组给出。每一项是一个从 1 到 365 的整数。 火车票有 三种不同的销售方式 &#xff1a; 一张 为期一天 的通…

Android 安卓内存安全漏洞数量大幅下降的原因

谷歌决定使用内存安全的编程语言 Rust 向 Android 代码库中写入新代码&#xff0c;尽管旧代码&#xff08;用 C/C 编写&#xff09;没有被重写&#xff0c;但内存安全漏洞却大幅减少。 Android 代码库中每年发现的内存安全漏洞数量&#xff08;来源&#xff1a;谷歌&#xff09…

Spring Boot实现足球青训俱乐部管理自动化

4 系统设计 4.1 系统架构设计 B/S系统架构是本系统开发采用的结构模式&#xff0c;使用B/S模式开发程序以及程序后期维护层面需要的经济成本是很低的&#xff0c;用户能够承担得起。使用这样的模式开发&#xff0c;用户使用起来舒心愉悦&#xff0c;不会觉得别扭&#xff0c;操…

WebSocket消息防丢ACK和心跳机制对信息安全性的作用及实现方法

WebSocket消息防丢ACK和心跳机制对信息安全性的作用及实现方法 在现代即时通讯&#xff08;IM&#xff09;系统和实时通信应用中&#xff0c;WebSocket作为一种高效的双向通信协议&#xff0c;得到了广泛应用。然而&#xff0c;在实际使用中&#xff0c;如何确保消息的可靠传输…

Docker笔记-Docker磁盘空间清理

无用的容器指的是已经停止运行且处于非活跃状态的容器。无用的镜像包括没有被任何容器使用的镜像&#xff0c;或者是被标记为"<none>"的镜像&#xff0c;通常是构建过程中产生的无标签镜像。 通过执行 docker container ls -a 和 docker image ls -a 命令&…

LiveNVR监控流媒体Onvif/RTSP功能-支持电子放大拉框放大直播视频拉框放大录像视频流拉框放大电子放大

LiveNVR监控流媒体Onvif/RTSP功能-支持电子放大拉框放大直播视频拉框放大录像视频流拉框放大电子放大 1、视频广场2、录像回看3、RTSP/HLS/FLV/RTMP拉流Onvif流媒体服务 1、视频广场 视频广场 -》播放 &#xff0c;左键单击可以拉取矩形框&#xff0c;放大选中的范围&#xff…

2024年9月中国干旱监测报告(FYDI-2.0指数)

目录 引言 旱情监测与分析 资料来源 引言 2024年9月&#xff0c;北方的降水逐渐增多&#xff0c;进入华西秋雨集中期&#xff0c;从青藏高原北部一直延伸到东北多地&#xff0c;常出现大范围的云带&#xff0c;西北地区的降雨强度较大。南方地区降水分布不均&#xff0c;受…

【Python报错已解决】error: subprocess-exited-with-error

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 专栏介绍 在软件开发和日常使用中&#xff0c;BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…

025.Oracle_DBMS_job定时任务

课 程 推 荐我 的 个 人 主 页&#xff1a;&#x1f449;&#x1f449; 失心疯的个人主页 &#x1f448;&#x1f448;入 门 教 程 推 荐 &#xff1a;&#x1f449;&#x1f449; Python零基础入门教程合集 &#x1f448;&#x1f448;虚 拟 环 境 搭 建 &#xff1a;&#x1…

Windows开发工具使用技巧

在 Windows 上进行开发时&#xff0c;有许多工具和技巧可以提升开发效率和用户体验。以下是一些常用的开发工具和技巧&#xff1a; 常用开发工具 1. Visual Studio Code (VS Code) - 插件管理&#xff1a;利用扩展市场&#xff08;Extension Marketplace&#xff09;安装各种…

RabbitMQ基本原理

一、基本结构 所有中间件技术都是基于 TCP/IP 协议基础之上进行构建新的协议规范&#xff0c;RabbitMQ遵循的是AMQP协议&#xff08;Advanced Message Queuing Protocol - 高级消息队列协议&#xff09;。 生产者发送消息流程&#xff1a; 1、生产者和Broker建立TCP连接&#…

如何实现Mybatis自定义插件

背景 MyBatis的插件机制&#xff0c;也可称为拦截器&#xff0c;是一种强大的扩展工具。它允许开发者在不修改MyBatis框架源代码的情况下&#xff0c;通过拦截和修改MyBatis执行过程中的行为来定制和增强功能。 MyBatis插件可以拦截四大核心组件的方法调用&#xff1a;Executor…

Certbot自动申请并续期https证书

Certbot自动申请并续期https证书 一、 安装 Certbot&#xff1a;使用命令安装 Certbot&#xff1a; dnf install certbot python3-certbot-nginx获取 SSL 证书&#xff1a;运行 Certbot 命令来获取并安装 SSL 证书。 示例命令&#xff0c;替换其中的域名和路径信息&#xff1a…

共和国勋章获得者:李振声

李振声&#xff0c;1931年2月出生于山东淄博&#xff0c;是中共党员、著名遗传学家和小麦遗传育种专家&#xff0c;兼任中国科学院院士和第三世界科学院院士。 他被誉为“中国小麦远缘杂交之父”和“当代后稷”&#xff0c;是中国小麦远缘杂交育种的奠基人。 教育背景与早年经…

react+antdMobie实现消息通知页面样式

一、实现效果 二、代码 import React, { useEffect, useState } from react; import style from ./style/index.less; import { CapsuleTabs, Ellipsis, Empty, SearchBar, Tag } from antd-mobile; //消息通知页面 export default function Notification(props) {const [opti…

Python办公自动化案例:批量修改Word文件中的段落格式

案例:Python实现批量修改Word文件中的段落格式。 在处理大量Word文档时,经常需要批量修改这些文档的格式,比如统一段落格式,以提升文档的一致性和专业性。使用Python来实现这一任务可以极大地提高工作效率,特别是当涉及到数百或数千个文档时。Python通过第三方库如python…

vue3 antdv3/4 Modal显示一个提示,内容换行显示。

1、官网地址&#xff1a; Ant Design Vue — An enterprise-class UI components based on Ant Design and Vue.js 2、显示个信息&#xff1a; Modal.info({title: This is a notification message,content: h(div, {}, [h(p, some messages...some messages...),h(p, some …