C++——关联式容器(4):set和map

        在接触了诸如二叉搜索树、AVL树、红黑树的树形结构之后,我们对树的结构有了大致的了解,现在引入真正的关联式容器。

        首先,先明确了关联式容器的概念。我们之前所接触到的如vector、list等容器,我们知道他们实际上都是线性的数据结构,因此也称之为序列式容器。而关联式容器也是存储数据用,只是其特别的<key,value>键值对的元素结构使得在数据检索方面的效率得到了很大的提升。

        STL中提供的关联式容器可以分为两类:树形结构和哈希结构。哈希结构我们会在后文再叙述。树形结构中关联式容器主要有:set、map、multiset、multimap四种,其底层都是红黑树。

4. set与multiset的用法

4.1 set的特征

        set实际上就是我们之前介绍的K模型,下面给出一些set特征的汇总:

①容器中存储的元素只有一个值,这个值既是其value又是标识它的key,不允许重复元素;

②set的元素只允许插入或删除操作,不允许修改(元素类型是const);

③set的底层是红黑树,所以其底层实际存放的是<value,value>的键值对,但在插入删除时只需要给出value即可。其查找元素时间复杂度是logN。

4.2 set的接口

4.2.1 set的模板参数

        模板参数中包含:

key——set中存放的数据类型;

Compare——比较逻辑的仿函数,缺省值是less小于比较,形成左树小,右树大的结构。

4.2.2 set构造函数

(1)默认构造;

(2)迭代区间(first,last)构造;

(3)拷贝构造。

4.2.3 set迭代器

        iterator begin()——返回set中起始位置元素的迭代器

        iterator end()——返回set中最后一个元素后面的迭代器

        const_iterator cbegin() const ——返回set中起始位置元素的const迭代器

        const_iterator cend() const ——返回set中最后一个元素后面的const迭代器

        reverse_iterator rbegin() ——返回set第一个元素的反向迭代器,即end

        reverse_iterator rend() ——返回set最后一个元素下一个位置的反向迭代器, 即begin

        const_reverse_iterator crbegin() const ——返回set第一个元素的反向const迭代器,即cend

        const_reverse_iterator crend() const ——返回set最后一个元素下一个位置的反向const迭代器,即cbegin

4.2.4 set的其他函数

①empty

        检测set是否为空,空返回true,否则返回true。

②size

        返回set中有效元素的个数。

③insert

        (1)单元素:在set中插入元素val,实际插入的是<val, val>构成的键值对,如果插入成功,返回<该元素在set中的位置,true>;如果插入失败,说明val在set中已经存在,返回<val在set中的位置,false>。

        (2)范围插入。

④erase

        (1)删除set中position位置上的元素。

        (2)删除set中值为val的元素,返回删除的元素的个数。

        (3)删除set中[first, last)区间中的元素。

⑤swap

        交换两个set。

⑥clear

        将set中的元素清空。

⑦find

        返回set中值为val的元素的位置。

⑧count

        返回set中值为val的元素的个数。

4.3 multiset

        multiset的接口使用方法和set完全一致,其唯一不同就是允许存储重复元素

5. map的用法

5.1 map的特征

        map和set有一定的相似性,运用到的是KV模型,下面是mapt特征的汇总:

①容器中存储的元素有两个值,一个是标识它的key,一个是表示其值的value。不允许出现相同key的元素,而不同key允许value相同。

②map的元素key不可以被修改,但是其对应的value允许修改,可通过[]操作符进行新增或修改操作。

③map的底层是红黑树,其底层存放的是<key,value>的键值对。查找元素时间复杂度是logN。

5.2 map的接口

5.2.1 map的模板参数

        模板参数中包含:

key——map中存放的键值对的key的类型;

T——map中存放的键值对的value的类型;

Compare——比较逻辑的仿函数,缺省值是less小于比较,形成左树小,右树大的结构。

5.2.2 map构造函数

(1)默认构造;

(2)迭代区间(first,last)构造;

(3)拷贝构造。

5.2.3 map迭代器

        iterator begin()——返回set中起始位置元素的迭代器

        iterator end()——返回set中最后一个元素后面的迭代器

        const_iterator cbegin() const ——返回set中起始位置元素的const迭代器

        const_iterator cend() const ——返回set中最后一个元素后面的const迭代器

        reverse_iterator rbegin() ——返回set第一个元素的反向迭代器,即end

        reverse_iterator rend() ——返回set最后一个元素下一个位置的反向迭代器, 即begin

        const_reverse_iterator crbegin() const ——返回set第一个元素的反向const迭代器,即cend

        const_reverse_iterator crend() const ——返回set最后一个元素下一个位置的反向const迭代器,即cbegin

5.2.4 map的其他函数

①empty

        检测map是否为空,空返回true,否则返回true。

②size

        返回map中有效元素的个数。

③insert

        (1)单元素:在map中插入键值对元素val,如果插入成功,返回<该元素在map中的位置,true>;如果插入失败,说明在map中已经存在,返回<val在map中的位置,false>。

        (2)范围插入。

④erase

        (1)删除map中position位置上的元素。

        (2)删除map中key为k的元素,返回删除的元素的个数。

        (3)删除map中[first, last)区间中的元素。

⑤swap

        交换两个map。

⑥clear

        将map中的元素清空。

⑦find

        返回map中key为k的元素的位置。

⑧count

        返回map中key为k的元素的个数。

⑨[]操作符

        []操作符通过给定的key值找到其对应的value值,返回的是value值(即键值对第二个成员)的引用,因此[]既可以用于访问key对应的value,也可以用于修改对应的value值。

5.3 multimap

        multimap的接口使用方法和map完全一致,其唯一不同也是允许存储重复元素

6.set和map的模拟实现

6.1 红黑树的接口改造

        因为set和map的底层都是红黑树,所以我们首先需要对之前写过的红黑树进行改造。

6.1.1 红黑树的结点

        红黑树结点为了同时适用于set和map,因此模板参数使用一个T来表示。当set使用时,T就是一个规定的类型;当map使用时,T就是一个pair类型的键值对。

	enum color {RED,BLACK};//红黑树的结点//由于不确定所适配的是什么容器(set是K,map是KV),因此使用一个模板参数T进行代替template<class T>struct RBTreeNode {T _val;RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;color _color;RBTreeNode(T val):_val(val), _left(nullptr), _right(nullptr), _parent(nullptr), _color(RED){}};

6.1.2  红黑树的迭代器

        因为set和map均需要使用迭代器,因此红黑树也需要实现它的迭代器。我们首先给出其框架代码,然后再逐一补全。

        迭代器封装的是红黑树的结点,除此之外,为了满足自减操作的需要,需要额外需要一个说明树的根节点的成员(在库中使用了带头结点的树来满足这个需求)。迭代器的模板为了满足const的需求,依旧是经典的三个。

	//对于红黑树,我们需要为它写一个迭代器类型template<class T, class Ptr, class Ref>class RBTreeIterator {private:typedef RBTreeNode<T> Node;Node* _node;Node* _root;typedef RBTreeIterator<T, Ptr, Ref> self;public:RBTreeIterator(Node* node, Node* root):_node(node), _root(root){}};
6.1.2.1 前置++

        一般遍历红黑树的策略都是中序遍历,因为这样得到的是一个递增或递减的序列,具有实际意义。所以我们就要通过能够仅凭一个指定的点,找到其在红黑树中序遍历的下一个结点。

        中序遍历顺序是左→中→右,因此拿到一个节点,其突破点就在于有无右树。

①若其具有右树,则说明此时迭代器当前处于“中”,接下来就该中序访问右子树,即下一个结点是右子树的最左节点。

②若其没有右子树,则说明当前右子树遍历完了,现在就需要确定是哪棵树的右子树遍历完了,于是可以一直向父结点回溯寻找。如果是右孩子就说明它的右子树也遍历完了,所以继续向上找父结点;当发现是父结点的左孩子就说明它的左子树遍历完了,那么此时下一个节点即为这个父结点;也有可能父结点为空了,说明整棵树遍历完成,返回空指针作为遍历的end。

		self& operator++(){//采取中序遍历(左根右)的策略,那么对于++而言,找到下一位置是谁即可//分情况讨论://基本思路就是看当前子树是否遍历完成,有右树就代表没有完成,需要继续处理右树。如果完成就向上找,自己属于哪一棵左子树,从而继续遍历根节点和右树//①如果发现当前结点有右孩子,那么说明下一个结点是右子树的最左孩子if (_node->_right){Node* cur = _node->_right;while (cur->_left){cur = cur->_left;}_node = cur;}else{Node* cur = _node;Node* parent = _node->_parent;//②如果发现当前结点是父结点的左孩子,那么下一个结点就是应该是该结点的父亲//③如果发现当前结点没有右子树,那么说明下个结点就是向上找,直到找到是左孩子的父结点while (parent && cur == parent->_right){cur = parent;parent = parent->_parent;}_node = parent;}return *this;}
6.1.2.2 前置--

         --即为++的逆序,逻辑十分相似。首先因为end是由空指针替代,所以没有任何树的信息,于是才引入了一个成员记录树的根节点,以便在第一次--操作时可以通过一直找右的方法找到第一个遍历的结点。

        在之后,类似的,只需判断有无左孩子。有则说明下一个节点就是左子树的最右结点;没有则向上回溯直到找到是谁的右孩子。

		self& operator--(){//相当于++操作的逆序,也就成了右根左的遍历顺序了//基本思路:看当前子树是否遍历完成,有左树就代表没有完成,需要继续处理左树。如果完成就向上找,自己属于哪一棵右子树,从而继续遍历根节点和左树//对于--操作而言,起点可以是end(),即一个空指针,当从空指针开始--时,需要找到中序遍历的最后一个节点,即最右节点,因此需要知道根节点,所以迭代器需要新增一个root成员//但在实际的std库中,红黑树具有一个头结点,所以迭代器不会走到空,也就不需要这个root成员了if (_node == nullptr){Node* cur = _root;while (cur->_right){cur = cur->_right;}_node = cur;}//①如果发现当前结点有左孩子,那么说明下一个结点是左子树的最右孩子else if (_node->_left){Node* cur = _node->left;while (cur->_right){cur = cur->_right;}_node = cur;}else{Node* cur = _node;Node* parent = _node->_parent;//②如果发现当前结点是父结点的右孩子,那么下一个结点就是应该是该结点的父亲//③如果发现当前结点没有左子树,那么说明下个结点就是向上找,直到找到是右孩子的父结点while (parent && cur == parent->_left){cur = parent;parent = parent->_parent;}_node = parent;}return *this;}
6.1.2.3 其他函数

         其他函数包括解引用、判断相等等函数。

		Ref operator*(){return _node->_val;}Ptr operator->(){return &(_node->_val);}bool operator==(const self& it){return it._node == _node;}bool operator!=(const self& it){return it._node != _node;}

6.1.3 红黑树

6.1.3.1 模板参数与默认成员函数

        为了同时兼容set和map,红黑树参数模板缩减至三个。、

K——key的类型;

T——value的类型,或者说是应该存储的元素的类型。对于set而言T与K是相同的,对于map而言T就是pair<key,value>;

KeyOfT——取得key值的仿函数。因为set的key可以直接取得,而map的key需要访问pair的first成员得到,因此给出仿函数来解决这个问题。

	template<class K, class T, class KeyOfT>//模板参数:// K——key的类型// T——value的类型,对于set而言T与K是相同的,对于map而言T就是pair<key,value>// KeyOfT——取得key值的仿函数class RBTree {typedef RBTreeNode<T> RBNode;public://无参构造RBTree():_root(nullptr){}//拷贝构造RBTree(const RBTree& rb){_root = copy(rb._root);}private:RBNode* copy(RBNode* root){if (root == nullptr) return nullptr;RBNode* newnode = new RBNode(root->_val);newnode->_left = copy(root->_left);newnode->_right = copy(root->_right);return newnode;}public://析构函数~RBTree(){destroy(_root);_root = nullptr;}private:void destroy(RBNode* root){if (root == nullptr) return;destroy(root->_left);destroy(root->_right);delete root;}public://赋值重载操作符RBTree& operator=(const RBTree rb){swap(_root, rb->_root);return *this;}private:RBNode* _root;};
6.1.3.2 迭代器

        实现了const和非const两种迭代器。begin函数即为开始点,找到最左结点即可;end函数则是空指针构造迭代器。

		//迭代器public:typedef RBTreeIterator<T, T*, T&> iterator;typedef RBTreeIterator<T, const T*, const T&> constiterator;iterator begin(){RBNode* cur = _root;while (cur && cur->_left){cur = cur->_left;}return iterator(cur, _root);}iterator end(){return iterator(nullptr, _root);}constiterator cbegin(){RBNode* cur = _root;while (cur && cur->_left){cur = cur->_left;}return constiterator(cur, _root);}constiterator cend(){return { nullptr,_root };}
6.1.2.3 其他函数

        注意修改insert和find返回值。insert返回迭代器和bool的pair,使用make_pair来构造。find返回迭代器。

//插入//在标准库中,insert返回的实际上是pair<iterator,bool>,可以通过库函数make_pair(T1 x,T2 y)来创建pairpair<iterator, bool> insert(const T& data){//第一个结点特殊处理if (_root == nullptr){_root = new RBNode(data);_root->_color = BLACK;return make_pair(iterator(_root, _root), true);}RBNode* cur = _root;RBNode* parent = nullptr;//对于set和map,它们取出key值的方法是不同的//set的key和value相同,就是传入的参数data,因此直接使用data既可以拿到key值//而map的key值不同,它传入的data是一个结构体pair,需要通过pair.first的形式来拿到key值//可见面对这样同种目的但操作不同的情况,就需要通过仿函数来解决了////以红黑树为底层的容器,需要提供对应的仿函数来完成取得key值的功能,而在红黑树中,只需要使用即可KeyOfT Getkey;while (cur){if (Getkey(cur->_val) > Getkey(data)){parent = cur;cur = cur->_left;}else if (Getkey(cur->_val) < Getkey(data)){parent = cur;cur = cur->_right;}else{return make_pair(iterator(cur,_root),false);}}cur = new RBNode(data);if (Getkey(parent->_val) > Getkey(data)){parent->_left = cur;cur->_parent = parent;}else{parent->_right = cur;cur->_parent = parent;}RBNode* ret = cur;//调整红黑树颜色//红黑树规则:// ①根结点颜色一定是黑色// ②不能出现连续的红结点,即红结点的孩子一定是黑色// ③各条路径(根结点->叶子结点)上的黑色节点数目相同// ④叶子结点(此处认为是空结点)颜色为黑色//在这样的规则限制下,不难发现红黑树最长路径一定小于最短路径的二倍这个特征//当违反了红黑树规则才需要调整红黑树颜色//插入新的结点时,选择插入红色节点可能违反不能有连续的红色节点的规则;选择插入黑色节点则必然会违反黑色节点数目相同的规则//因此两害相权取其轻,选择插入红色节点,因此我们主要处理的就是连续红结点的问题//于是连续的两个节点:cur和p都是红色的,而u作为p的兄弟节点决定了调整方式,而在调整中受影响的则是p和u的父结点gwhile (parent && parent->_color == RED){//根据形式的不同,一般分为三类处理//在解决连续红色的问题时,也要兼顾到褐色节点数目相同这一规则RBNode* grandparent = parent->_parent;RBNode* uncle = parent == grandparent->_left ? grandparent->_right : grandparent->_left;//①u为红色(p、u均为红)//p、u同时变为黑色,g变为红色,因为g是红色,因此需要继续向上检查if (uncle && uncle->_color == RED){parent->_color = uncle->_color = BLACK;grandparent->_color = RED;parent = grandparent->_parent;cur = grandparent;}//②u为黑色或不存在,而g、p和cur是顺位(左左或右右)//此时单纯的变色会使得p子树和u子树路径黑色节点数目不同(因为在修改p为黑,u本就为黑,u相较p黑色节点少一个)//为了可以顺利变色,我们首先要旋转,红色的p成为了子树的根,黑色的g成为了u这棵树的父结点,此时可以证明只需要p变为黑,g变为红即可//旋转操作就是AVL树中的左右单旋//③u为黑色或不存在,而g、p和cur是逆位(左右或右左)//此时只需要将p结点左旋或右旋一次即可形成如②的情况,因此这种情况使用双旋即可else{if (parent == grandparent->_left){//左左顺位——右旋,p变黑,g变红if (cur == parent->_left){RotateR(grandparent);}//左右逆位——左右双旋,p变黑,g变红else{RotateLR(grandparent);}}else{//右右顺位——左旋,p变黑,g变红if (cur == parent->_right){RotateL(grandparent);}//右左逆位——右左双旋,p变黑,g变红else{RotateRL(grandparent);}}//由于②③结果的子树根结点都是黑色因此不会影响上一层,无需向上检查break;}}//根结点有可能变色,需要修改_root->_color = BLACK;return make_pair(iterator(ret, _root), true);}iterator find(const K& key){RBNode* cur = _root;KeyOfT Getkey;while (cur){if (key > Getkey(cur->_val)){cur = cur->_right;}else if (key < Getkey(cur->_val)){cur = cur->_left;}else{return iterator(cur, _root);}}return iterator(nullptr, _root);}private:void RotateL(RBNode* grandparent){RBNode* subR = grandparent->_right;RBNode* subRL = subR->_left;//结点链接三组:subR和grandparent、grandparent和sunRL、grandparent->_parent和subRsubR->_left = grandparent;grandparent->_right = subRL;if (grandparent->_parent == nullptr){_root = subR;}else if (grandparent->_parent->_left == grandparent){grandparent->_parent->_left = subR;}else{grandparent->_parent->_right = subR;}subR->_parent = grandparent->_parent;grandparent->_parent = subR;if (subRL)	//右左子树为空树subRL->_parent = grandparent;//修改颜色:p变黑,g变红subR->_color = BLACK;grandparent->_color = RED;}void RotateR(RBNode* grandparent){RBNode* subL = grandparent->_left;RBNode* subLR = subL->_right;//结点链接三组:subL和grandparent、grandparent和sunLR、grandparent->_parent和subLsubL->_right = grandparent;grandparent->_left = subLR;if (grandparent->_parent == nullptr){_root = subL;}else if (grandparent->_parent->_left == grandparent){grandparent->_parent->_left = subL;}else{grandparent->_parent->_right = subL;}subL->_parent = grandparent->_parent;grandparent->_parent = subL;if (subLR)	//左右子树为空树subLR->_parent = grandparent;//修改颜色:p变黑,g变红subL->_color = BLACK;grandparent->_color = RED;}//左右双旋void RotateLR(RBNode* grandparent){RBNode* subL = grandparent->_left;RBNode* subLR = grandparent->_left->_right;//只需要旋转,颜色最后指定RotateL(subL);RotateR(grandparent);//修改颜色:cur变黑,g变红subLR->_color = BLACK;grandparent->_color = RED;}//右左双旋void RotateRL(RBNode* grandparent){RBNode* subR = grandparent->_right;RBNode* subRL = grandparent->_right->_left;//只需要旋转,颜色最后指定RotateR(subR);RotateL(grandparent);//修改颜色:cur变黑,g变红subRL->_color = BLACK;grandparent->_color = RED;}

6.2 set的封装

        封装set只需要调用对应红黑树的接口就好。

        注意两处:①提供红黑树使用的仿函数:set的key和value相同,传入key,返回key即可。②typedef迭代器时,由于定义的是模板类的中的类型,因为模板没有实例化,所以编译器不知道iterator是什么,需要给出关键字typename说明这是一个类型名。

	template <class K>class set {//取出Key的仿函数struct Set_KeyOfT{//传入一个value,是T类型,要求返回value的key//set的value和key相同const K& operator()(const K& key){return key;}};public://由于是对模板类中的类型进行重命名,模板类没有实例化,编译器并不知道iterator是什么,因此需要加上typename来告诉编译器这是一个类型名typedef typename RBTree::RBTree<K, K, Set_KeyOfT>::iterator iterator;typedef typename RBTree::RBTree<K, K, Set_KeyOfT>::constiterator constiterator;iterator begin(){return _tree.begin();}iterator end(){return _tree.end();}constiterator cbegin(){return _tree.cbegin();}constiterator cend(){return _tree.cend();}pair<iterator,bool> insert(const K& key){return _tree.insert(key);}iterator find(const K& key){return _tree.find(key);}private:RBTree::RBTree<K, K, Set_KeyOfT> _tree;};

6.3 map的封装

        同样的,封装map也只需要调用对应红黑树的接口就好。

        注意三处:①提供红黑树使用的仿函数:传入value值,即一个pair,返回pair的first成员就是key。②typedef迭代器需要给出关键字typename。③注意[]函数的实现。

	template <class K, class V>class map {//取出Key的仿函数struct Map_KeyOfT{//传入一个value,是T类型,要求返回value的key//map的value是一个pair,key是pair的firstconst K& operator()(const pair<K, V>& kv){return kv.first;}};public://由于是对模板类中的类型进行重命名,模板类没有实例化,编译器并不知道iterator是什么,因此需要加上typename来告诉编译器这是一个类型名typedef typename RBTree::RBTree<K, pair<const K, V>, Map_KeyOfT>::iterator iterator;typedef typename RBTree::RBTree<K, pair<const K, V>, Map_KeyOfT>::constiterator constiterator;iterator begin(){return _tree.begin();}iterator end(){return _tree.end();}constiterator cbegin(){return _tree.cbegin();}constiterator cend(){return _tree.cend();}pair<iterator, bool> insert(const pair<K,V>& kv){return _tree.insert(kv);}iterator find(const K& key){return _tree.find(key);}V& operator[](const K& key){return find(key)->second;}private:RBTree::RBTree<K, pair<const K, V>, Map_KeyOfT> _tree;};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/54567.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

51单片机——矩阵键盘

一、矩阵键盘原理图 我们发现: P17,P16,P15,P14控制行&#xff0c; P13,P12,P11,P10控制列。 所以我们如果要选择第四列&#xff0c;只需要把整个P1先给高电位1&#xff0c;再把P10给低电位0。 二、代码 P10xFF; P100; if(P170){Delay(20);while(P170);Delay(20);KeyNum…

【Linux笔记】虚拟机内Linux内容复制到宿主机的Window文件夹(文件)中

一、共享文件夹 I、Windows宿主机上创建一个文件夹 目录&#xff1a;D:\Centos_iso\shared_files II、在VMware中设置共享文件夹 1、打开VMware Workstation 2、选择需要设置的Linux虚拟机&#xff0c;点击“编辑虚拟机设置”。 3、在“选项”标签页中&#xff0c;选择“共…

【Stm32】从零建立一个工程

这里我们创建“STM32F103”系列的文件&#xff0c;基于“固件库” 1.固件库获取 https://www.st.com.cn/zh/embedded-software/stm32-standard-peripheral-libraries.html 2.使用Keil创建.uvprojx文件 前提是已经下载好了“芯片对应的固件” 3.复制底层驱动代码 将固件库下的…

LeetcodeTop100 刷题总结(一)

LeetCode 热题 100&#xff1a;https://leetcode.cn/studyplan/top-100-liked/ 文章目录 一、哈希1. 两数之和49. 字母异位词分组128. 最长连续序列 二、双指针283. 移动零11. 盛水最多的容器15. 三数之和42. 接雨水&#xff08;待完成&#xff09; 三、滑动窗口3. 无重复字符的…

嵌入式入门小工程

此代码基于s3c2440 1.点灯 //led.c void init_led(void) {unsigned int t;t GPBCON;t & ~((3 << 10) | (3 << 12) | (3 << 14) | (3 << 16));t | (1 << 10) | (1 << 12) | (1 << 14) | (1 << 16);GPBCON t; }void le…

上位机图像处理和嵌入式模块部署(linux小系统开发)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 和若干年前相比较&#xff0c;现在嵌入式linux开发要简单得多。稍微贵一点的有树莓派&#xff0c;国产的有各种水果派&#xff0c;基本上都可以按照…

Google 扩展 Chrome 安全和隐私功能

过去一周&#xff0c;谷歌一直在推出新特性和功能&#xff0c;旨在让用户在 Chrome 上的桌面体验更加安全&#xff0c;最新的举措是扩展在多个设备上保存密钥的功能。 到目前为止&#xff0c;Chrome 网络用户只能将密钥保存到 Android 上的 Google 密码管理器&#xff0c;然后…

【学习笔记】STM32F407探索者HAL库开发(四)F103时钟系统配置

【学习笔记】STM32F407探索者HAL库开发&#xff08;四&#xff09;F103时钟系统配置 1 STM32F1时钟树1.1 STM32F103时钟系统图1.2 STM32F103时钟树简图1.2.1 高速部分1.2.2 低速部分 1.3 函数配置1.4 时钟输出1.5 STM32CubeMX时钟树配置F11.6 时钟系统对与嵌入式开发的重要性 1…

Spring IDEA 2024 自动生成get和set以及toString方法

1.简介 在IDEA中使用自带功能可以自动生成get和set以及toString方法 2.步骤 在目标类中右键&#xff0c;选择生成 选择Getter和Setter就可以生成每个属性对应的set和get方法&#xff0c; 选择toString就可以生成类的toString方法&#xff0c;

Linux 文件系统(下)

目录 一.文件系统 1.文件在磁盘上的存储方式 a.盘面、磁道和扇区 b.分区和分组 2.有关Block group相关字段详解 a.inode编号 b.inode Table&#xff08;节点表&#xff09; c.Data blocks&#xff08;数据区&#xff09; d.小结 二.软硬链接 1.软链接 a.软链接的创建…

数据湖 Data Lake-概述

Data Lake 1. 数据湖的定义 数据湖是一种存储系统&#xff0c;用于集中存储大量的原始数据&#xff0c;可以按数据本来的原始格式进行存储&#xff0c;用户可以在需要时提取和分析这些数据。 A data lake is a centralized repository designed to hold vast volumes of data …

OpenCV特征检测(4)检测图像中的角点函数cornerHarris()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 Harris 角点检测器。 该函数在图像上运行 Harris 角点检测器。类似于 cornerMinEigenVal 和 cornerEigenValsAndVecs&#xff0c;对于每个像素 (…

如何将生物序列tokenization为token?

原理讲解 tokenization是自然语言处理领域非常成熟的一项技术&#xff0c;tokenization就是把我们研究的语言转换成计算机能够识别的数字——token。 在生物领域&#xff0c;如何把核苷酸或氨基酸序列tokenization成token呢&#xff1f; 我们可以使用k-mer技术&#xff1a; k-m…

网络设备登录——《路由与交换技术》实验报告

目录 一、实验目的 二、实验设备和环境 三、实验记录 1.通过 Console 登录 步骤1:连接配置电缆。 步骤2:启动PC,运行超级终端。 步骤3:进入Console 配置界面 2.通过 Telnet 登录 步骤1:通过 Console 接口配置 Telnet 用户。 步骤2:配置 super 口令 步骤3:配置登录欢迎…

神经网络构建原理(以MINIST为例)

神经网络构建原理(以MINIST为例) 在 MNIST 手写数字识别任务中&#xff0c;构建神经网络并训练模型来进行分类是经典的深度学习应用。MNIST 数据集包含 28x28 像素的手写数字图像&#xff08;0-9&#xff09;&#xff0c;任务是构建一个神经网络&#xff0c;能够根据输入的图像…

吉首大学--23级题目讲解

7-1 单链表基本操作 在 C/C 中&#xff0c;.&#xff08;点&#xff09;和 ->&#xff08;箭头&#xff09;运算符用于访问结构体或类的成员&#xff0c;但它们的使用场景不同。 1. . 运算符 . 运算符用于访问结构体或类的成员&#xff0c;通过对象或结构体变量直接访问。…

es的封装

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、类和接口介绍0.封装思想1.es的操作分类 二、创建索引1.成员变量2.构造函数2.添加字段3.发送请求4.创建索引总体代码 三.插入数据四.删除数据五.查询数据 前…

Element Plus 中Input输入框

通过鼠标或键盘输入字符 input为受控组件&#xff0c;他总会显示Vue绑定值&#xff0c;正常情况下&#xff0c;input的输入事件会正常被响应&#xff0c;他的处理程序应该更新组件的绑定值&#xff08;或使用v-model&#xff09;。否则&#xff0c;输入框的值将不会改变 不支…

windows环境下配置MySQL主从启动失败 查看data文件夹中.err发现报错unknown variable ‘log‐bin=mysql‐bin‘

文章目录 问题解决方法 问题 今天在windows环境下配置MySQL主从同步&#xff0c;在修改my.ini文件后发现MySQL启动失败了 打开my.ini检查参数发现没有问题 [mysqld] #开启二进制日志&#xff0c;记录了所有更改数据库数据的SQL语句 log‐bin mysql‐bin #设置服务id&#x…

[数据集][目标检测]不同颜色的安全帽检测数据集VOC+YOLO格式7574张5类别

重要说明&#xff1a;数据集里面有2/3是增强数据集&#xff0c;请仔细查看图片预览&#xff0c;确认符合要求在下载&#xff0c;分辨率均为640x640 数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件…