禁忌搜索算法(TS算法)求解实例---旅行商问题 (TSP)

目录

  • 一、采用TS求解 TSP
  • 二、 旅行商问题
    • 2.1 实际例子:求解 6 个城市的 TSP
    • 2.2 ==**求解该问题的代码**==
    • 2.3 代码运行过程截屏
    • 2.4 代码运行结果截屏(后续和其他算法进行对比)
  • 三、 ==如何修改代码?==
    • 3.1 减少城市坐标,如下:
    • 3.2 增加城市坐标,如下:
  • 四、 禁忌搜索算法 (Tabu Search, TS) 原理
    • 4.1 TS算法定义
    • 4.2 TS算法算法的基本思想
    • 4.3 TS算法算法的工作原理
    • 4.4 TS算法算法的关键要素
    • 4.5 TS算法算法的优缺点
      • 4.5.1 优点
      • 4.5.2 缺点
    • 4.6 TS算法算法的应用场景

一、采用TS求解 TSP

求解代码在文中,后续会出其他算法求解TSP问题,你们参加数学建模竞赛只需要会改代码即可。

用来对比此专栏的
遗传算法(GA算法)求解实例—旅行商问题 (TSP)
粒子群算法(PSO算法)求解实例—旅行商问题 (TSP)
模拟退火算法(SA算法)求解实例—旅行商问题 (TSP)
蚁群算法(ACO算法)求解实例—旅行商问题 (TSP)
注意每次运行算法得到的结果可能不太一样。

我知道大家对原理性的东西不感兴趣,我把原理性的东西放在后面,大家如果需要写数模论文可以拿去,但是记得需要改一改,要不然查重过不去。

二、 旅行商问题

2.1 实际例子:求解 6 个城市的 TSP

假设有 6 个城市,其坐标如下:

城市X 坐标Y 坐标
01020
13040
22010
34030
41010
55020

目标是找到一个经过所有城市且总距离最短的路径。

2.2 求解该问题的代码

import numpy as np
import random# 定义城市坐标
cities = np.array([[10, 20],[30, 40],[20, 10],[40, 30],[10, 10],[50, 20]
])# 计算两城市之间的欧几里得距离
def calculate_distance(city1, city2):return np.sqrt(np.sum((city1 - city2) ** 2))# 计算总旅行距离
def total_distance(path):distance = 0for i in range(len(path) - 1):distance += calculate_distance(cities[path[i]], cities[path[i + 1]])distance += calculate_distance(cities[path[-1]], cities[path[0]])  # 回到起点return distance# 生成初始解
def generate_initial_solution(num_cities):return list(np.random.permutation(num_cities))# 生成邻域解(通过交换路径中的两个城市)
def get_neighborhood(solution):neighbors = []for i in range(len(solution)):for j in range(i + 1, len(solution)):neighbor = solution.copy()neighbor[i], neighbor[j] = neighbor[j], neighbor[i]neighbors.append(neighbor)return neighbors# 禁忌搜索算法主函数
def tabu_search(cities, tabu_size=10, max_iter=500):num_cities = len(cities)# 初始化禁忌表tabu_list = []# 生成初始解current_solution = generate_initial_solution(num_cities)current_distance = total_distance(current_solution)# 初始化最佳解best_solution = current_solution.copy()best_distance = current_distancefor iteration in range(max_iter):# 生成所有邻域解neighbors = get_neighborhood(current_solution)neighbors_distances = [(neighbor, total_distance(neighbor)) for neighbor in neighbors]# 在禁忌表之外选择最优邻域解next_solution = Nonenext_distance = float('inf')for neighbor, distance in neighbors_distances:if neighbor not in tabu_list and distance < next_distance:next_solution = neighbornext_distance = distance# 更新当前解current_solution = next_solutioncurrent_distance = next_distance# 更新禁忌表tabu_list.append(current_solution)if len(tabu_list) > tabu_size:tabu_list.pop(0)# 更新全局最佳解if current_distance < best_distance:best_solution = current_solution.copy()best_distance = current_distanceprint(f"Iteration {iteration + 1}: Best distance = {best_distance:.2f}")return best_solution, best_distance# 运行禁忌搜索算法
best_path, best_distance = tabu_search(cities)
print("Best path:", best_path)
print("Best distance:", best_distance)

2.3 代码运行过程截屏

在这里插入图片描述

2.4 代码运行结果截屏(后续和其他算法进行对比)

在这里插入图片描述

三、 如何修改代码?

这一部分是重中之重,大家参加数学建模肯定是想跑出自己的结果,所以大家只需要把自己遇到的数学问题,抽象成TSP问题,然后修改代码的城市坐标,然后运行即可。

# 定义城市坐标
cities = np.array([[10, 20],[30, 40],[20, 10],[40, 30],[10, 10],[50, 20]
])

3.1 减少城市坐标,如下:

# 定义城市坐标
cities = np.array([[10, 20],[30, 40],[20, 10],[40, 30]
])

3.2 增加城市坐标,如下:

# 定义城市坐标
cities = np.array([[10, 20],[30, 40],[20, 10],[40, 30],[30, 40],[20, 10],[10, 10],[50, 20]
])

四、 禁忌搜索算法 (Tabu Search, TS) 原理

4.1 TS算法定义

禁忌搜索算法 (Tabu Search, TS) 是一种基于局部搜索的启发式优化算法,由 Fred Glover 在 1986 年提出。禁忌搜索算法通过维护一个“禁忌表”来记录最近访问过的解或搜索路径,从而避免算法在搜索过程中陷入循环或局部最优解。通过合理的禁忌策略和多样化策略,TS 算法能够跳出局部最优解,找到全局最优解或近似最优解。

4.2 TS算法算法的基本思想

禁忌搜索算法的核心思想是对局部搜索进行改进。传统的局部搜索算法可能会因为陷入局部最优解或搜索循环而难以找到全局最优解。禁忌搜索算法通过在每次迭代中选择当前邻域中的最优解作为下一步搜索方向,并使用一个称为“禁忌表”的数据结构来记录已访问过的解或路径,从而避免回到先前访问过的解。禁忌表的内容会动态更新,以使得搜索能够进行更广泛的探索。

4.3 TS算法算法的工作原理

  1. 初始化

    • 随机生成一个初始解 s 作为当前解。
    • 设置一个空的禁忌表 T 和最大禁忌表长度 L,定义最大迭代次数 max_iter
  2. 生成邻域解

    • 对当前解 s,生成其邻域解集合 N(s)。通常,邻域解是通过对当前解的微小修改(如交换、移位等)生成的多个新解。
  3. 选择最优邻域解

    • 在邻域解集合 N(s) 中,选择一个不在禁忌表中的最佳解 s',使得其目标函数值最优(通常是最小化问题中的最小值)。
    • 若所有邻域解均在禁忌表中,则可以选择一个禁忌解作为当前解。
  4. 更新禁忌表

    • 将新的解 s' 添加到禁忌表 T 中,以避免在未来的搜索过程中重新访问该解。
    • 若禁忌表长度超过最大限制 L,则删除最早加入的解。
  5. 更新当前解和全局最优解

    • 将当前解 s 更新为新解 s'
    • 如果 s' 的目标函数值优于全局最优解 s*,则更新全局最优解 s*
  6. 迭代和终止

    • 重复步骤 2-5,直到达到最大迭代次数 max_iter 或找到满意解为止。

4.4 TS算法算法的关键要素

  1. 禁忌表(Tabu List)

    • 禁忌表是一个用来存储禁忌解的集合,用于防止搜索过程中的循环和回溯。禁忌表的长度 L 通常设定为一个固定值,当禁忌表超过最大长度时,将最早的解移出禁忌表。
  2. 邻域结构

    • 邻域结构决定了每次搜索所能达到的解空间范围。常见的邻域操作有交换、移位、反转等操作。
  3. 禁忌策略

    • 禁忌策略决定了哪些解被列入禁忌表。在一般情况下,禁忌解是根据一定规则选定的,以确保多样化搜索和有效避免循环。
  4. 解的多样化策略

    • 在搜索过程陷入局部最优时,解的多样化策略用于打破停滞状态,推动搜索进入新的区域。

4.5 TS算法算法的优缺点

4.5.1 优点

  • 跳出局部最优:通过禁忌表机制,TS 算法能够有效避免局部最优解,继续在解空间中进行搜索。
  • 灵活性强:TS 算法可以应用于多种优化问题,通过调整邻域结构和禁忌策略,可以针对不同问题进行适应性调整。
  • 易于实现:相较于一些复杂的优化算法,TS 算法较为简单,易于实现。

4.5.2 缺点

  • 计算开销较大:在大规模问题中,生成邻域解和维护禁忌表可能会带来较高的计算开销。
  • 参数敏感:算法性能对禁忌表长度、邻域结构和禁忌策略较为敏感,需要根据具体问题进行调优。
  • 不保证全局最优解:虽然 TS 算法能跳出局部最优,但不能保证一定找到全局最优解。

4.6 TS算法算法的应用场景

  • 旅行商问题 (TSP):寻找经过所有城市的最短路径。
  • 车辆路径问题 (VRP):优化多辆车在多个配送点的路径。
  • 生产调度与资源分配:如工作车间调度、工厂生产排程、任务分配等。
  • 网络设计与路由优化:优化计算机网络或物流网络中的节点连接和路由路径。
  • 组合优化问题:如背包问题、图着色问题、设备布局问题等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/54220.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于安卓App自动化的一些想法

安卓App自动化一般使用PythonAppium。页面元素通常是使用AndroidStudio中的UI Automator Viewer工具来进行页面元素的追踪。但是这里涉及到一个问题就是&#xff0c;安卓apk在每次打包的时候&#xff0c;会进行页面的混淆以及加固&#xff0c;所以导致每次apk打包之后会出现页面…

(c++)字符串相加(真没想到字符串还有相加运算)

#include<iostream> #include<string> using namespace std;int main() {string ch1 "你好";string ch2 "再见";string ch3 ch1 ch2;cout << ch3 << endl;system("pause");return 0; } 运行结果&#xff1a; 学了c…

Qt与Udp

(1)绑定端口 (2)广播 用udp实现广播通信_udp广播-CSDN博客 数据的发送是面向整个子网的&#xff0c;任何一台在子网中的计算机都可以接收到相同的数据。 如果一台机器希望向其他N台机器发送信息&#xff0c;这时候可以使用UDP的广播。 --------------- 广播地址&#xff1…

云计算和虚拟化技术 背诵

https://zhuanlan.zhihu.com/p/612215164 https://zhuanlan.zhihu.com/p/612215164 云计算是指把计算资源、存储资源、网络资源、应用软件等集合起来&#xff0c;采用虚拟化技术 &#xff0c;将这些资源池化&#xff0c;组成资源共享池&#xff0c;共享池即是“云”。 云计算…

C++ | Leetcode C++题解之第406题根据身高重建队列

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {sort(people.begin(), people.end(), [](const vector<int>& u, const vector<int>& v) …

LeetCode[中等] 189.轮转数组

给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 思路 创建一个新数组&#xff0c;存储原数组旋转后的元素&#xff0c;然后将新数组中的元素复制回原数组。 public class Solution {public void Rotate(int[] nums, int k)…

二叉搜索树与双向链表

描述 输入一棵二叉搜索树&#xff0c;将该二叉搜索树转换成一个排序的双向链表。如下图所示 数据范围&#xff1a;输入二叉树的节点数 0≤n≤10000≤n≤1000&#xff0c;二叉树中每个节点的值 0≤val≤10000≤val≤1000 要求&#xff1a;空间复杂度O(1)O(1)&#xff08;即在原…

【电脑组装】✈️从配置拼装到安装系统组装自己的台式电脑

目录 &#x1f378;前言 &#x1f37b;一、台式电脑基本组成 &#x1f37a;二、组装 &#x1f379;三、安装系统 &#x1f44b;四、系统设置 &#x1f440;五、章末 &#x1f378;前言 小伙伴们大家好&#xff0c;上篇文章分享了在平时开发的时候遇到的一种项目整合情况&…

浏览器插件利器--allWebPluginV2.0.0.20-beta版发布

allWebPlugin简介 allWebPlugin中间件是一款为用户提供安全、可靠、便捷的浏览器插件服务的中间件产品&#xff0c;致力于将浏览器插件重新应用到所有浏览器。它将现有ActiveX控件直接嵌入浏览器&#xff0c;实现插件加载、界面显示、接口调用、事件回调等。支持Chrome、Firefo…

无人机之处理器篇

无人机的处理器是无人机系统的核心部件之一&#xff0c;它负责控制无人机的飞行、数据处理、任务执行等多个关键功能。以下是对无人机处理器的详细解析&#xff1a; 一、处理器类型 无人机中使用的处理器主要包括以下几种类型&#xff1a; CPU处理器&#xff1a;CPU是无人机的…

VMware Fusion虚拟机Mac版 安装Ubuntu操作系统教程

Mac分享吧 文章目录 下载镜像地址&#xff1a;[www.macfxb.cn](http://www.macfxb.cn)一、Ubuntu安装完成&#xff0c;软件打开效果二、Mac中安装Ubuntu虚拟机1️⃣&#xff1a;下载镜像2️⃣&#xff1a;创建虚拟机3️⃣&#xff1a;虚拟机设置4️⃣&#xff1a;虚拟机安装5️…

Oracle绑定变量窥视与自适应游标共享

一.Oracle的绑定变量窥视与自适应游标共享 创建test表&#xff0c;列status存在2个值&#xff0c;有数据倾斜&#xff0c;在列status create table test as select rownum id,DBMS_RANDOM.STRING(A,12) name,DECODE(MOD(ROWNUM,500),0,Inactive,Active) status from all_obj…

MyBatis 增删改查【后端 17】

MyBatis 增删改查 引言 MyBatis 是一个优秀的持久层框架&#xff0c;它支持定制化 SQL、存储过程以及高级映射。MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集。MyBatis 可以使用简单的 XML 或注解用于配置和原始映射&#xff0c;将接口和 Java 的 POJOs (…

photozoom classic 9解锁码2024年最新25位解锁码

photozoom classic 9 破解版顾及比恐龙还要稀有&#xff0c;我曾经和你一样一直再找&#xff0c;找了好几个月&#xff0c;也没有找到真的破解版&#xff0c;下载很多次&#xff0c; 都是病毒插件之类的 我昨天下了几次&#xff0c;没有一个不附带插件病毒木马的.......&#x…

MongoDB高可用和分片集群知识

一、MongoDB实现高可用 1. MongoDB复制集(Replication Set) 在实际生产中&#xff0c;MongoDB要实现高可用&#xff0c;以免MongoDB单实例挂了&#xff0c;服务不可用。MongoDB实现高可用是以MongoDB复制集的形式实现&#xff0c;和集群部署概念相同&#xff0c;MongoDB复制集…

COTERRORSET—— LLM训练新基准让模型从自身错误中学习

概述 论文地址&#xff1a;https://arxiv.org/pdf/2403.20046.pdf 在最近的研究中&#xff0c;大规模语言模型因其推理能力而备受关注。这些模型在各种任务和应用中取得了令人瞩目的成果&#xff0c;尤其是使用思维链&#xff08;CoT&#xff09;提示方法的有效性已得到证实。…

研1日记12

1. 改19->10 2. 学习数据不平衡问题 1. 欠采样 合并两个样本数据 两种方式 1. 按原分布比例划分。sklearn中train_test_split里&#xff0c;参数stratify含义解析_traintestsplit参数stratify-CSDN博客 3.刘二大人 卷积操作 待看论文&#xff1a; 刘老师指导&#xff1a…

[Mamba_4]LMa-UNet

题目&#xff1a;LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation 中文题目&#xff1a;LMa-UNet: 探索大kernel Mamba在医学图像分割上的潜力 0摘要 在临床实践中&#xff0c;医学图像分割提供了有关目标器官或组织的轮廓和尺寸的有用信息&#…

外贸|基于Java+vue的智慧外贸平台系统(源码+数据库+文档)

外贸|智慧外贸平台|外贸服务系统 目录 基于Javavue的智慧外贸平台系统 一、前言 二、系统设计 三、系统功能设计 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍&#xff1a;✌️大厂码农|毕设布道师&…

Docker容器技术1——docker基本操作

Docker容器技术 随着云计算和微服务架构的普及&#xff0c;容器技术成为了软件开发、测试和部署过程中的重要组成部分。其中&#xff0c;Docker作为容器技术的代表之一&#xff0c;以其简便易用的特点赢得了广大开发者的青睐。 Docker允许开发者在轻量级、可移植的容器中打包和…