Spring Boot-跨服务事务管理问题

Spring Boot 跨服务事务管理问题及其解决方案

1. 引言

在微服务架构中,应用被拆分成多个独立的服务,这些服务通常通过 HTTP、消息队列或 gRPC 等方式相互通信。在某些场景下,一个业务流程需要在多个服务之间进行操作,每个服务会对不同的数据库或资源进行更新。为了确保这些操作具有一致性,跨服务事务管理成为关键。然而,微服务之间的事务管理比传统的单体架构复杂得多,因为涉及多个服务、数据库和网络通信。

2. 跨服务事务管理的挑战
2.1 传统事务的局限性

在单体架构中,事务管理较为简单,可以通过本地事务或分布式事务(如 XA 协议)来确保多个操作要么全部成功,要么全部失败。然而,在微服务架构中,每个服务都有独立的数据库,并且彼此通过网络通信。传统的两阶段提交(2PC)协议虽然可以处理分布式事务,但它对性能影响较大,且不适合大规模的微服务环境,容易造成系统的整体锁定问题。

2.2 跨服务的事务不一致性

在微服务架构中,一个业务流程通常会跨多个服务。如果没有合适的事务管理机制,某些服务可能会在流程中途失败,从而导致数据的不一致。例如,用户下单操作可能涉及到订单服务、库存服务和支付服务。如果订单创建成功但库存更新失败,系统可能会出现不一致的状态。

2.3 网络和服务的不可预测性

由于微服务之间通过网络通信,网络延迟、请求超时、服务不可用等问题可能会影响到跨服务的事务操作。在发生这些问题时,需要有合适的补偿机制来处理部分成功的事务操作。

3. 常见的跨服务事务管理模式
3.1 两阶段提交(2PC)

两阶段提交(2PC,Two-Phase Commit)是一种经典的分布式事务协议,主要分为两个阶段:准备阶段和提交阶段。协调者首先向所有参与者发送准备请求,如果所有参与者都准备好,则发送提交请求,所有参与者执行提交操作。如果有任何参与者无法准备,则协调者发送回滚请求,所有参与者回滚事务。

优点

  • 保证了强一致性,所有操作要么成功,要么失败。

缺点

  • 性能差,协调者需要锁定资源,直到所有参与者响应。
  • 容易导致瓶颈,尤其在高并发下。
  • 不适合长时间的事务,因为锁定资源的时间可能过长。
3.2 基于消息的最终一致性

在微服务架构中,最终一致性是比强一致性更为常用的事务管理方式。通过事件驱动架构,每个服务在成功完成其操作后会发送事件,其他服务根据接收到的事件执行相应的操作。如果服务之间操作不一致,可以通过补偿机制来修正。

流程

  1. 业务操作成功后,将事件发送到消息队列中。
  2. 其他服务监听消息队列,获取事件并执行相应的业务操作。
  3. 如果某个服务失败,通过重新发送消息或手动补偿机制来解决。

优点

  • 性能好,适合高并发和大规模系统。
  • 解耦服务之间的直接依赖,通过异步消息传递实现不同服务的协作。

缺点

  • 只能保证最终一致性,而非强一致性。
  • 需要设计好补偿机制来处理失败场景。
3.3 SAGA 模式

SAGA 模式是一种分布式事务管理模式,它将一个大事务分解为一系列的小事务,每个小事务有相应的补偿操作。如果其中某个事务失败,系统会执行补偿操作以回滚之前的事务。

SAGA 模式有两种常见实现方式:

  1. 编排模式:通过一个中心的“编排者”协调各个服务的事务执行和回滚。
  2. 事务链模式:每个服务完成操作后,调用下一个服务,如果某个服务失败,它会触发之前服务的补偿操作。

优点

  • 比 2PC 更加轻量,适合长时间运行的事务。
  • 可以保证最终一致性。

缺点

  • 实现复杂,尤其是设计补偿操作。
  • 需要仔细考虑每个服务的事务顺序及补偿策略。
4. Spring Boot 实现跨服务事务
4.1 使用 Spring Cloud 和消息中间件实现最终一致性

Spring Boot 可以与 Spring Cloud 和消息中间件(如 RabbitMQ 或 Kafka)结合,采用事件驱动的方式实现最终一致性。

  1. 服务1:发送事件
    在完成业务操作后,将事件发布到消息队列:

    @Service
    public class OrderService {@Autowiredprivate RabbitTemplate rabbitTemplate;public void createOrder(Order order) {// 创建订单逻辑rabbitTemplate.convertAndSend("order-exchange", "order.created", order);}
    }
    
  2. 服务2:监听事件
    另一个服务监听队列,接收到事件后执行相应操作:

    @Service
    public class InventoryService {@RabbitListener(queues = "order-created-queue")public void handleOrderCreated(Order order) {// 处理库存扣减逻辑}
    }
    
  3. 补偿机制:在监听消息时,可以增加重试机制或手动干预逻辑,确保最终一致性。如果某个服务失败,可以重新发布消息,或者通过管理系统手动进行补偿操作。

4.2 使用 Spring Cloud 和 SAGA 模式实现跨服务事务

Spring Boot 结合 Spring Cloud 以及一些 SAGA 库(如 Spring Cloud Alibaba Seata)可以实现 SAGA 模式的跨服务事务管理。

  1. Seata 服务端配置:Seata 提供了一个全局事务协调器,通过它可以实现分布式事务的协调。首先,需要在 Spring Boot 项目中引入 Seata 依赖:

    <dependency><groupId>io.seata</groupId><artifactId>seata-spring-boot-starter</artifactId><version>1.4.2</version>
    </dependency>
    
  2. 全局事务管理:在业务逻辑上使用 @GlobalTransactional 注解管理分布式事务:

    @GlobalTransactional
    public void processOrder(Order order) {orderService.createOrder(order);inventoryService.deductInventory(order);paymentService.processPayment(order);
    }
    
  3. 补偿事务:Seata 提供了自动的补偿机制,如果某个服务失败,Seata 会自动调用已经完成的服务的回滚操作。

4.3 使用 Spring 的 @Transactional 实现跨数据库的分布式事务

在一些场景下,虽然服务被拆分成多个独立服务,但可能多个数据库的操作仍在同一个服务中。这时可以通过 @Transactional 和 JTA(Java Transaction API)来实现跨数据库的分布式事务管理。

@Transactional
public void performMultiDbOperation() {// 在第一个数据库中执行操作dataSource1.insertData();// 在第二个数据库中执行操作dataSource2.insertData();
}

Spring Boot 提供了 JTA 事务管理器(如 Atomikos 和 Bitronix)来管理分布式事务。

5. 跨服务事务管理的最佳实践
  1. 最终一致性优先:对于大多数微服务架构,选择最终一致性(而非强一致性)是较为实用的方案。通过事件驱动和消息中间件,服务间可以在较松散耦合的情况下保持数据一致性。

  2. 尽量避免分布式事务:跨服务事务会带来很大的复杂性和性能开销。尽量将每个服务的事务独立管理,通过异步机制或者定期校验的方式来保证数据的一致性。

  3. 设计好补偿机制:无论是使用 SAGA 还是消息驱动,补偿机制都至关重要。每个服务都应具备失败时回滚的能力,并且系统应提供手动干预工具。

  4. 监控和日志:跨服务事务的失败可能难以发现和处理,开发者应该设计好日志和监控系统,能够快速定位问题并进行修复。

6. 总结

Spring Boot 在跨服务事务管理上提供了多种解决方案,从传统的两阶段提交到基于消息的最终一致性和 SAGA 模式。每种方案都有其优缺点,开发者应根据系统需求和性能考量选择合

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/54193.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

揭开谜底:用 C 语言打造你的扫雷游戏!

目录 1. 功能概述 用户界面 2. 游戏分析与设计 2.1 数据结构分析 地雷存储&#xff1a; 玩家视图&#xff1a; 2.2 文件结构设计 3. 代码实现 game.h game.c test.c 亮点功能与创新 智慧的较量&#xff1a;核心游戏循环 进阶功能&#xff1a;让游戏更加与众不同 还…

golang学习笔记18——golang 访问 mysql 数据库全解析

推荐学习文档 golang应用级os框架&#xff0c;欢迎stargolang应用级os框架使用案例&#xff0c;欢迎star案例&#xff1a;基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识&#xff0c;这里有免费的golang学习笔…

人工智能GPT____豆包使用的一些初步探索步骤 体验不一样的工作

豆包工具是我使用比较频繁的一款软件&#xff0c;其集合了很多功能。对话 图像 AI搜索 伴读等等使用都非常不错。电脑端安装集合了很多功能。 官网直达&#xff1a;豆包 使用我的文案创作能力&#xff0c;您可以注意以下几个技巧&#xff1a; 明确需求&#xff1a; 尽可能具…

Vue3实现打印功能

1、安装插件 npm i vue3-print-nb --save 2、main.js全局配置 import print from vue3-print-nb app.use(print) 3、设置打印区域 为打印区域设置 id 选择器 <div id"printData"><el-table border :data"tableData" style"width: 100%…

和笔记相关的页面:编辑笔记和展示笔记 以及相关的viewmodel

1. 编辑笔记 EditNotesScreen&#xff1a;这是一个可编辑笔记的屏幕&#xff0c;它接收一个NavController对象、一个书籍的bookId和一个可选的modifier参数。它使用了LocalNotesViewModel来管理笔记的数据。 它首先定义了几个状态变量&#xff0c;包括是否显示对话框、编辑内…

C++ ——string的模拟实现

目录 前言 浅记 1. reserve&#xff08;扩容&#xff09; 2. push_back&#xff08;尾插&#xff09; 3. iterator&#xff08;迭代器&#xff09; 4. append&#xff08;尾插一个字符串&#xff09; 5. insert 5.1 按pos位插入一个字符 5.2 按pos位插入一个字符串 …

后端入门 (JQuery基础) 01

引入jQuery资源&#xff08;https://cdn.staticfile.net/jquery/1.10.2/jquery.min.js&#xff09; <script src"jquery.js"></script> <!-- 引入jQuery资源 --> 绑定事件的方式&#xff1a; 1. 直接使用事件函数 $("p").click(func…

C++第五十一弹---IO流实战:高效文件读写与格式化输出

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 目录 1. C语言的输入与输出 2. 流是什么 3. CIO流 3.1 C标准IO流 3.2 C文件IO流 3.2.1 以写方式打开文件 3.2.1 以读方式打开文件 4 stringstre…

flask框架

Flask 1 flask简介 我们之所以在浏览器中输入localhost:8080然后就可以把webapps下面的项目文件以浏览器的方式打开&#xff0c;功臣在与tomcat。python语言写的项目&#xff0c;转换为web&#xff0c;Flask框架 轻量级web应用框架。 环境准备&#xff1a; pip install fl…

【C语言】内存函数详细讲解

文章目录 前言strerror的声明和使用字符串分类函数字符转换函数内存拷贝函数&#xff08;memcpy)memcpy的声明和使用memcpy函数的模拟实现 内存拷贝函数&#xff08;memmove&#xff09;memmove的声明和使用memmove模拟实现 内存比较函数&#xff08;memcmp&#xff09;memcmp的…

UDP_SOCKET编程实现

文章目录 socket编程接口认识struct sockaddr类 编写一个server服务Client代码查看启动结果代码修正1.获取内核分配给客户端的信息2.修正不匹配ip不能访问的问题 不同机器之间的通信利用xftp将udp_client传给wsl的ubuntu机器进行演示现在模拟在windows下的udp_client代码: 对方…

时序预测 | MATLAB实现BKA-XGBoost(黑翅鸢优化算法优化极限梯度提升树)时间序列预测

时序预测 | MATLAB实现BKA-XGBoost(黑翅鸢优化算法优化极限梯度提升树)时间序列预测 目录 时序预测 | MATLAB实现BKA-XGBoost(黑翅鸢优化算法优化极限梯度提升树)时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 Matlab实现BKA-XGBoost时间序列预测&a…

WPF UpdateSourceTrigger属性

在WPF&#xff08;Windows Presentation Foundation&#xff09;中&#xff0c;UpdateSourceTrigger 是一个属性&#xff0c;通常用于数据绑定中&#xff0c;它控制着何时将绑定目标&#xff08;即UI元素&#xff09;的值更新到绑定源&#xff08;即数据对象&#xff09;。当UI…

Go语言现代web开发08 if和switch分支语句

if语句 If is the most common conditional statement in programming languages. If the result of the condition caculation is positive(true), the code inside if statement will be executed. In the next example, value a will be incremented if it is less than 10…

《黑神话:悟空》:中国游戏界的新篇章

引言&#xff1a; 在数字娱乐的浪潮中&#xff0c;游戏已成为连接全球文化的重要媒介。 《黑神话&#xff1a;悟空》的问世&#xff0c;不仅是中国游戏产业的一个里程碑&#xff0c;更是文化自信的闪耀展现。 这款游戏以其独特的艺术风格和深刻的文化内涵&#xff0c;在全球范…

k8s中的认证授权

目录 一、kubernetes API 访问控制 1.1 UserAccount与ServiceAccount 1.1.1 ServiceAccount 1.1.2 ServiceAccount示例 二、认证(在k8s中建立认证用户) 2.1 创建UserAccount 2.2 RBAC&#xff08;Role Based Access Control&#xff09; 2.2.1 基于角色访问控制授权&…

RT-DETR改进策略:BackBone改进|使用StarNet改进RT-DERT,显著提升性能与效率

摘要 本文介绍了我们如何将最新的StarNet模型成功应用于实时目标检测任务中,特别是用于改进RT-DERT(一种高效的实时目标检测网络)的主干网络部分。通过详尽的实验和理论分析,我们证明了StarNet不仅能够显著增强RT-DERT的检测精度,同时保持了高效的计算性能和低延迟特性。…

C++从入门到起飞之——继承下篇(万字详解) 全方位剖析!

&#x1f308;个人主页&#xff1a;秋风起&#xff0c;再归来~&#x1f525;系列专栏&#xff1a;C从入门到起飞 &#x1f516;克心守己&#xff0c;律己则安 目录 1、派⽣类的默认成员函数 1.1 四个常⻅默认成员函数 1.2 实现⼀个不能被继承的类 ​编辑 2. 继承与友…

力扣题解2390

大家好&#xff0c;欢迎来到无限大的频道。 今日继续给大家带来力扣题解。 题目描述​&#xff08;中等&#xff09;&#xff1a; 从字符串中移除星号 给你一个包含若干星号 * 的字符串 s 。 在一步操作中&#xff0c;你可以&#xff1a; 选中 s 中的一个星号。 移除星号…

力扣刷题(6)

两数之和 II - 输入有序数组 两数之和 II - 输入有序数组-力扣 思路&#xff1a; 因为该数组是非递减顺序排列&#xff0c;因此可以设两个左右下标当左右下标的数相加大于target时&#xff0c;则表示右下标的数字过大&#xff0c;因此将右下标 - -当左右下标的数相加小于targ…