Python 基本库用法:数学建模

文章目录

    • 前言
    • 数据预处理——sklearn.preprocessing
      • 数据标准化
      • 数据归一化
      • 另一种数据预处理
      • 数据二值化
      • 异常值处理
    • numpy 相关用法
      • 跳过 nan 值的方法——nansum和nanmean
      • 展开多维数组(变成类似list列表的形状)
      • 重复一个数组——np.tile
    • 分组聚集——pandas.DataFrame.groupby()
      • 如何使用
        • 直接使用聚集函数
        • Agg
        • 直接解析分组结果
      • 参数说明——by
        • 传入属性列列表
        • 传入字典 dict
    • 表格合并——pandas.merge()
    • 数据库关系型表格 → 二维表——pandas.DataFrame.pivot()
    • 序列极值的获取——scipy.signal.argrelextrema


前言

  使用 Python 进行数学建模时,需要进行各种各样的数据预处理。因此熟练掌握 Python 的一些库可以帮助我们更好的进行数学建模。

数据预处理——sklearn.preprocessing

数据标准化

  数据标准化的目的是,通过线性缩放,使得一组数据的均值变成 0 0 0,方差变成 1 1 1。使用scale方法:

from sklearn import preprocessing
import numpy as npdata = np.array([[1.,1.,4.,5.],[1.,4.,1.,9.],[1.,9.,8.,1.]])
# 默认按列标准化(axis = 0),如需按行标准化需要指定 axis = 1
print(preprocessing.scale(data))# 结果如下,原本方差为 0 的数据,标准化后方差仍然是 0(因为无法变成1)
#[[ 0.         -1.1111678  -0.11624764  0.        ]
# [ 0.         -0.20203051 -1.16247639  1.22474487]
# [ 0.          1.31319831  1.27872403 -1.22474487]]

  我们知道标准化的实质是减去均值、除以标准差。StandarScalar可以用一组数据的均值、方差去标准化另一组数据。比如:

from sklearn import preprocessing
import numpy as npdata = np.array([[1.,1.,4.,5.],[1.,4.,1.,9.],[1.,9.,8.,1.]])
scaler = preprocessing.StandardScaler().fit(data)
new_data = np.array([[9.,2.,3.,4.]])# 用 data 的均值、标准差去标准化 new_data
print(scaler.transform(new_data))
# 结果为 [[ 8.         -0.80812204 -0.46499055 -0.30618622]]

数据归一化

  数据归一化指的是,通过线性缩放,使得一组数据的最小值为 0 0 0,最大值为 1 1 1。**实质是全体减去最小值,然后除以减法过后的最大值。**可以使用MinMaxScaler类:

from sklearn import preprocessing
import numpy as npdata = np.array([[1.,1.,4.,5.],[1.,4.,1.,9.],[1.,9.,8.,1.]])
# 创建 scaler
scaler = preprocessing.MinMaxScaler()print(scaler.fit_transform(data))
# 结果是
#[[0.         0.         0.42857143 0.5       ]
# [0.         0.375      0.         1.        ]
# [0.         1.         1.         0.        ]]# 同样可以用 data 的缩放方式来归一化 new_data
new_data = np.array([[1,0,3,7]])
print(scaler.transform(new_data))
# 结果为 [[ 0.         -0.125       0.28571429  0.75      ]]

另一种数据预处理

  还有一种数据预处理是,对初始数据 { x 1 , x 2 , ⋯ , x n } \{x_1,x_2,\cdots,x_n\} {x1,x2,,xn} 都除以 max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \max\limits_{1\leq i\leq n}|x_i| 1inmaxxi,使得所有数据都落在 [ − 1 , 1 ] [-1,1] [1,1] 范围内。MaxAbsScaler类可以完成这种预处理,其用法和前面的MinMaxScaler类似。这个方法对那些已经中心化均值为 0 0 0 或者稀疏的数据有意义。

数据二值化

  数据二值化设置一个阈值threshold,小于等于它的变成 0 0 0,大于它的变成 1 1 1

from sklearn import preprocessing
import numpy as npdata = np.array([[1.,1.,4.,5.],[1.,4.,1.,9.],[1.,9.,8.,1.]])
# Binarizer 无参数默认 threshold = 0
print(preprocessing.Binarizer(threshold = 1).transform(data))
# 结果为
#[[0. 0. 1. 1.]
# [0. 1. 0. 1.]
# [0. 1. 1. 0.]]

参考文献:预处理数据的方法总结(使用sklearn-preprocessing)_from sklearn import preprocessing-CSDN博客

异常值处理

  四分位法清除异常值:首先计算出序列的第一四分位数、第三四分位数 Q 1 , Q 3 Q_1,Q_3 Q1,Q3,然后计算四分位数间距 I Q R = Q 3 − Q 1 \mathit{IQR}=Q_3-Q_1 IQR=Q3Q1。认为可接受的数据范围是 [ Q 1 − 1.5 I Q R , Q 3 + 1.5 I Q R ] [{{Q}_{1}}-1.5\mathit{IQR},{{Q}_{3}}+1.5\mathit{IQR}] [Q11.5IQR,Q3+1.5IQR]。如下图:
在这里插入图片描述

图源来自图片水印所示博客。

import pandas as pd# 直接把数据从这里输入进来
data = pd.Series([1,1,4,5,1,4,1,9,1,9,8,1,0])Q1 = data.quantile(0.25)
Q3 = data.quantile(0.75)
IQR = Q3 - Q1
# 根据条件筛选和删除异常值,输出的 data 就是处理后的结果
data = data[~((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR)))]

numpy 相关用法

跳过 nan 值的方法——nansum和nanmean

import numpy as nparr = np.array([1, 2, 3, 4, np.nan])
print(arr.sum(),arr.mean()) # nan nan
print(np.nansum(arr),np.nanmean(arr)) # 10.0 2.5,相当于删除所有 nan 值再操作

展开多维数组(变成类似list列表的形状)

import numpy as nparr = np.array(range(16)).reshape(4,-1)print(arr)
"""
[[ 0  1  2  3][ 4  5  6  7][ 8  9 10 11][12 13 14 15]]
"""
# 下面三种方法任选其一即可
print(arr.ravel())
# [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15]
print(arr.flatten())
# [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15]
print(arr.reshape(-1))
# [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15]

重复一个数组——np.tile

import numpy as np# 只描述对于 2 维数组的情况,其他详情见参考文献data = np.array([[1,1,4],[5,1,4]])# 只传一个参数 x,那么行方向重复 x 次
print(np.tile(data,3))
"""
[[1 1 4 1 1 4 1 1 4][5 1 4 5 1 4 5 1 4]]
"""# 传一个含有两个参数的元组 (x,y),那么列方向重复 x 次,行方向重复 y 次
print(np.tile(data,(2,4)))
"""
[[1 1 4 1 1 4 1 1 4 1 1 4][5 1 4 5 1 4 5 1 4 5 1 4][1 1 4 1 1 4 1 1 4 1 1 4][5 1 4 5 1 4 5 1 4 5 1 4]]
"""

参考文献:numpy.tile()_np.tile-CSDN博客

分组聚集——pandas.DataFrame.groupby()

  对于一个表格进行类似 MySQL 聚集函数的处理,该方法的参数及默认值:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True,sort=True, group_keys=True, squeeze=False, observed=False, dropna=True) 

如何使用

直接使用聚集函数

  方法得到的是一个对象,对于该对象可以使用聚集函数。比如下面的例子:

import pandas as pddf = pd.DataFrame({'A': [1, 2, 3, 4],'B': [5, 6, 7, 8],'C': ['X', 'X', 'Y', 'Y']
})# 聚集函数——均值mean(),还可以是最大值max(),最小值min(),
# 求和sum(),求积prod(),计数count(),标准差std(),各种统计数据describe()等。
print(df.groupby('C').mean()) # 即参数 by = 'C'
# 结果如下所示
#      A    B
# C          
# X  1.5  5.5
# Y  3.5  7.5print(df.groupby('C').rank())
# 结果如下所示
#      A    B
# 0  1.0  1.0
# 1  2.0  2.0
# 2  1.0  1.0
# 3  2.0  2.0
Agg

  agg 在基于相同的分组情况下,可以对不同列分别使用不同的聚集函数,如:

import pandas as pddf = pd.DataFrame({'A': [1, 2, 3, 4],'B': [5, 6, 7, 8],'C': ['X', 'X', 'Y', 'Y']
})# 对 'A' 列分组求最小值,对 'B' 列分组求最大值
print(df.groupby('C').agg({'A':'min','B':'max'}))# 结果如下所示
#    A  B
# C      
# X  1  6
# Y  3  8

  也可以传入自定义函数,比如上面的'B':'max'也可以等价地改为'B':lambda x : max(x),其中参数x是由 agg 分组形成的元组。

直接解析分组结果

  有时候希望根据分组结果,一组显示一张表格。直接打印 groupby 后的对象是不行的:

import pandas as pddf = pd.DataFrame({'name': ['香蕉', '菠菜', '糯米', '糙米', '丝瓜', '冬瓜', '柑橘', '苹果', '橄榄油'],'category': ['水果', '蔬菜', '米面', '米面', '蔬菜', '蔬菜', '水果', '水果', '粮油'],'price': [3.5, 6, 2.8, 9, 3, 2.5, 3.2, 8, 18],'count': [2, 1, 3, 6, 4, 8, 5, 3, 2]
})print(df.groupby('category'))
# 结果只是类名 + 内存地址
# <pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000025D2D49B6D8>

  但是我们可以按照下面的方式遍历,其中循环变量namestr类型,groupDataFrame类型:

import pandas as pddf = pd.DataFrame({'name': ['香蕉', '菠菜', '糯米', '糙米', '丝瓜', '冬瓜', '柑橘', '苹果', '橄榄油'],'category': ['水果', '蔬菜', '米面', '米面', '蔬菜', '蔬菜', '水果', '水果', '粮油'],'price': [3.5, 6, 2.8, 9, 3, 2.5, 3.2, 8, 18],'count': [2, 1, 3, 6, 4, 8, 5, 3, 2]
})
result = df.groupby('category')for name, group in result:print(f'group name: {name}')print('-' * 30)print(group)print('=' * 30, '\n')
"""
group name: 水果
------------------------------name category  price  count
0   香蕉       水果    3.5      2
6   柑橘       水果    3.2      5
7   苹果       水果    8.0      3
==============================
group name: 米面
------------------------------name category  price  count
2   糯米       米面    2.8      3
3   糙米       米面    9.0      6
==============================
group name: 粮油
------------------------------name category  price  count
8  橄榄油       粮油   18.0      2
==============================
group name: 蔬菜
------------------------------name category  price  count
1   菠菜       蔬菜    6.0      1
4   丝瓜       蔬菜    3.0      4
5   冬瓜       蔬菜    2.5      8
==============================
"""

参数说明——by

  上面使用都是by = 'C'等传入某一个属性列的方式。

传入属性列列表

  如果要按照多个属性列分组,可以传入属性列列表如下所示:

import pandas as pddf = pd.DataFrame({'x':[1,1,1,1,2,2,2,2],'y':[3,3,4,4,3,3,4,4],'value':[1,1,4,5,1,4,1,9]
})
# 按照 (x,y) 分组并求取最大值
print(df.groupby(['x','y']).max())
"""
结果是:value
x y       
1 3      14      5
2 3      44      9
"""

  groupby 接收多个属性,会将这些属性全部变成索引。之后可以接上reset_index操作,传入参数level,可以将第level列索引变成属性。

传入字典 dict

  要求字典是intstr的映射。这种情况下,将不会按照df中原有的列进行分组,而是根据字典的内容,将原来df中的某一行映射到字典对应的类中。例如:

import pandas as pddf = pd.DataFrame({'name': ['香蕉', '菠菜', '糯米', '糙米', '丝瓜', '冬瓜', '柑橘', '苹果', '橄榄油'],'category': ['水果', '蔬菜', '米面', '米面', '蔬菜', '蔬菜', '水果', '水果', '粮油'],'price': [3.5, 6, 2.8, 9, 3, 2.5, 3.2, 8, 18],'count': [2, 1, 3, 6, 4, 8, 5, 3, 2]
})# 下面这 5 行是为了自动化地得到字典:
# {0: '蔬菜水果', 1: '蔬菜水果', 2: '米面粮油', 3: '米面粮油', 4: '蔬菜水果', 
# 5: '蔬菜水果', 6: '蔬菜水果', 7: '蔬菜水果', 8: '米面粮油'}
category_dict = {'水果': '蔬菜水果', '蔬菜': '蔬菜水果', '米面': '米面粮油', '粮油': '米面粮油'}
the_map = {}
for i in range(len(df.index)):the_map[i] = category_dict[df.iloc[i]['category']]
grouped = df.groupby(the_map)# 按照 the_map 进行分组,那么原 df 中第 0,1,4,5,6,7 行被归为“蔬菜水果”,
# 第 2,3,8 行被归为“米面粮油”
result = df.groupby(the_map)# 按照不同类别进行打印
for name, group in result:print(f'group name: {name}')print('-' * 30)print(group)print('=' * 30, '\n')
"""
结果为:
group name: 米面粮油
------------------------------name category  price  count
2   糯米       米面    2.8      3
3   糙米       米面    9.0      6
8  橄榄油       粮油   18.0      2
============================== group name: 蔬菜水果
------------------------------name category  price  count
0   香蕉       水果    3.5      2
1   菠菜       蔬菜    6.0      1
4   丝瓜       蔬菜    3.0      4
5   冬瓜       蔬菜    2.5      8
6   柑橘       水果    3.2      5
7   苹果       水果    8.0      3
============================== 
"""

参考文献:深入理解 Pandas 中的 groupby 函数_observed=false-CSDN博客

表格合并——pandas.merge()

  这个merge和 MySQL 的 join 是有几分相似的。该方法的参数和默认值:

DataFrame.merge(left, right, how='inner', on=None, left_on=None, right_on=None,left_index=False, right_index=False, sort=True,suffixes=('_x', '_y'), copy=True, indicator=False,validate=None)
  • 其中how还可以是left,right,outer,对应 MySQL 中的左、右、外连接;MySQL 中连接产生的 null 在 Python 中变成 nan。
  • on可以指定链接的时候参照那些属性列。默认情况下on = None,即自然连接
  • (不常用)indicator参数在最终合并形成的表格中加入一个_merge列,值域为{left_only,both,right_only},描述每一条结果是如何连接形成的。例子如下:
import pandas as pddf1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']})
df2 = pd.DataFrame({'col1': [1, 2, 2],'col_right':[2, 2, 2]})
print(pd.merge(df1, df2, on='col1', how='outer', indicator=True))
"""
结果如下所示:col1 col_left  col_right      _merge
0     0        a        NaN   left_only
1     1        b        2.0        both
2     2      NaN        2.0  right_only
3     2      NaN        2.0  right_only
"""

  参考文献:【python】详解pandas库的pd.merge函数-CSDN博客

数据库关系型表格 → 二维表——pandas.DataFrame.pivot()

  标题的意思是这样的:已有一个关系型数据库,可以指定两个索引(行索引、列索引)以及对应的值索引,转化为一个二维表格。如下图所示。
在这里插入图片描述
如果图片左边的 DataFrame 是变量 data,通过下面的语句实现到右边表格的转换:

data.pivot('name','year','gdp') 

  函数原型是:

DataFrame.pivot(index=None, columns=None, values=None)

  右边二维表行列索引的生成机制是 index 和 columns 的笛卡尔积。笛卡尔积集合中可能有不存在的 (index, columns) 组合,经过pivot处理变成 nan,如:

import pandas as pd
data = pd.DataFrame({'name':['原神','原神','星铁','星铁','星铁'],'year':[2022,2023,2022,2023,2024],'income':[11,21,31,41,51]
})
print(data,'\n','-' * 24)
print(data.pivot('name','year','income'))
"""name  year  income
0   原神  2022      11
1   原神  2023      21
2   星铁  2022      31
3   星铁  2023      41
4   星铁  2024      51 ------------------------
year  2022  2023  2024
name                  
原神    11.0  21.0   NaN
星铁    31.0  41.0  51.0
"""

  不能存在相同的 (index, columns) 组合:

import pandas as pd
data = pd.DataFrame({'name':['原神','原神'],'year':[2022,2022],'income':[11,21]
})
print(data.pivot('name','year','income'))
# ValueError: Index contains duplicate entries, cannot reshape

参考文献:Python dataframe.pivot()用法解析_dataframe pivot-CSDN博客

序列极值的获取——scipy.signal.argrelextrema

  已知一个序列,可以用这个库方便地求极大值极小值。代码示例如下:

from scipy.signal import argrelextrema
import numpy as np
# y 是待求序列
y = np.array([1,9,6,8,2,5,8,3,2,7,3,2,7,5])# np.greater_equal 表示求极大值,order = 1 表示和左边、右边的 1 个数字对比(是极大值的定义)
peak_index = argrelextrema(y,np.greater_equal,order=1)print(peak_index)
"""
结果: (array([ 1,  3,  6,  9, 12], dtype=int64),)
peak_index[0] 给出了极大值点的数组
"""

  上面使用np.greater_equal求极大值点,同样地我们可以使用np.less_equal求极小值点。甚至可以自定义函数,将上面代码第 7 行改为:

peak_index = argrelextrema(y,lambda a,b: a - b > 3,order=1)

  这将返回比左、右两边元素都大 3 3 3 的所有元素(此例中只有y[9])的索引(此例为9)。
参考文献:数据分析——scipy.signal.argrelextrema求数组中的极大值和极小值-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/53907.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从“游戏科学”到玄机科技:《黑神话:悟空》的视角打开动漫宇宙

近日&#xff0c;中国游戏界迎来了一场前所未有的盛事——由游戏科学公司开发的《黑神话&#xff1a;悟空》正式上线&#xff0c;并迅速成为全球玩家热议的焦点。在居高不下的讨论热度中&#xff0c;有人说他的成功在于对《西游记》为背景进行改编&#xff0c;对原著进行了分析…

数据分析与挖掘课程相关资源

这是在gitee上整的关于这门课的一个开源项目。 https://gitee.com/rainpet/python-data-analysis-and-mining-demo 头歌平台。 常见问题&#xff1a; 1、如何确认conda的版本&#xff0c;执行如下命令&#xff1a; conda list anaconda$2、实验室登陆后&#xff0c;无法上网&a…

基于Java+SpringBoot+Vue+MySQL的智能菜谱推荐管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 基于SpringBootVue的智能菜谱推荐管理系统【附源码文档】、…

“汉语新解” Prompt新高度,火爆的李继刚

“汉语新解” prompt 是由李继刚设计的一个用于启发人工智能模型进行创意性文本生成的指令模板。这个 prompt 的设计初衷是为了让AI能够以一种独特的方式解析和重新诠释常见的中文词汇&#xff0c;从而产生出具有深刻洞察力和幽默感的文本内容&#xff0c;仿佛是由鲁迅或林语堂…

装杯 之 Linux 指令1

hello&#xff0c;欢迎来到linux世界&#xff0c;在害没有学习linux时&#xff0c;看到别人操作&#xff0c;网课&#xff0c;真高级&#xff0c;感觉好厉害&#xff0c;就是说白了&#xff0c;看起来牛逼。ok&#xff0c;接下来&#xff0c;请大佬们进入linux之旅。 1.ls指令…

mfc140u.dll错误是什么情况?如何将mfc140u.dll丢失的解决方法详细分析

mfc140u.dll是 Microsoft Foundation Class (MFC) 库的一部分&#xff0c;通常与 Visual Studio 2015 及其后续版本相关联。如果系统中缺少 mfc140u.dll&#xff0c;可能会导致依赖该库的应用程序无法启动&#xff0c;并显示错误消息&#xff0c;如“程序无法启动&#xff0c;因…

分类预测|基于麻雀优化支持向量机的Adaboost集成的数据分类预测Matlab程序SSA-SVM-Adaboost

分类预测|基于麻雀优化支持向量机的Adaboost集成的数据分类预测Matlab程序SSA-SVM-Adaboost 文章目录 一、基本原理SSA-SVM-Adaboost 分类预测原理和流程总结 二、实验结果三、核心代码四、代码获取五、总结 一、基本原理 SSA-SVM-Adaboost 分类预测原理和流程 1. 麻雀优化算…

开源FormCreate低代码表单组件的配置项和事件的详解

在使用开源FormCreate低代码表单时&#xff0c;您可以通过各种 props 来定制表单的行为和外观。这些参数允许您控制表单的生成规则、配置选项、双向数据绑定等&#xff0c;为复杂的表单场景提供了强大的支持。 源码地址: Github | Gitee FormCreate组件Props 以下是常用的 pr…

由于安装nvm 引发的vue : 无法将“vue”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。

&#x1f388;亲爱的读者朋友们&#xff1a; 如果你觉得这篇文章对你有所帮助&#xff0c;恳请你为我点个赞&#x1f44d;。你的每一个赞都是对我辛勤创作的认可&#xff0c;是我继续前行的动力源泉。 同时&#xff0c;也欢迎你关注我的 CSDN 博客。在这里&#xff0c;我会持续…

探索数据可视化的奥秘:Seaborn库的魔力

文章目录 探索数据可视化的奥秘&#xff1a;Seaborn库的魔力背景&#xff1a;为何选择Seaborn&#xff1f;Seaborn是什么&#xff1f;如何安装Seaborn&#xff1f;简单函数介绍与示例场景应用示例常见问题与解决方案总结 探索数据可视化的奥秘&#xff1a;Seaborn库的魔力 背景…

深度剖析iOS渲染

iOS App 图形图像渲染的基本流程&#xff1a; 1.CPU&#xff1a;完成对象的创建和销毁、对象属性的调整、布局计算、文本的计算和排版、图片的格式转换和解码、图像的绘制。 2.GPU&#xff1a;GPU拿到CPU计算好的显示内容&#xff0c;完成纹理的渲染&#xff0c; 渲染完成后将渲…

c# Csv文件读写示例,如果文件存在追加写入

功能 1.写入 2.读取 导出文件效果 调用示例 注意示例中的ToDataTable()方法是自己的封装的扩展方法&#xff0c;源码在集合扩展方法-CSDN博客 private List<MarkDataModel> createMarkDataList(int count){var markDataModels new List<MarkDataModel>();for (…

RTMP播放器延迟最低可以做到多少?

技术背景 RTMP播放器的延迟可以受到多种因素的影响&#xff0c;包括网络状况、推流设置、播放器配置以及CDN分发等。因此&#xff0c;RTMP播放器的延迟并不是一个固定的数值&#xff0c;而是可以在一定范围内变化的。 正常情况下&#xff0c;网上大多看到的&#xff0c;针对R…

小琳AI课堂:LLaMA 3.1 开源大模型的全新里程碑

引言 大家好&#xff0c;这里是小琳AI课堂&#xff01;今天我们要聊的是Meta最新发布的开源大模型LLaMA 3.1。这个版本在AI界掀起了不小的波澜&#xff0c;不仅在参数规模上有显著提升&#xff0c;还在多项性能上实现了突破。让我们一起来看看LLaMA 3.1带来的新变化和意义吧&a…

爆改YOLOv8|利用SCConv改进yolov8-即轻量又涨点

1&#xff0c;本文介绍 SCConv&#xff08;空间和通道重构卷积&#xff09;是一种高效的卷积模块&#xff0c;旨在优化卷积神经网络&#xff08;CNN&#xff09;的性能&#xff0c;通过减少空间和通道的冗余来降低计算资源的消耗。该模块由两个核心组件构成&#xff1a; 空间重…

PHP轻量级高性能HTTP服务框架 - webman

摘要 webman 是一款基于 workerman 开发的高性能 HTTP 服务框架。webman 用于替代传统的 php-fpm 架构&#xff0c;提供超高性能可扩展的 HTTP 服务。你可以用 webman 开发网站&#xff0c;也可以开发 HTTP 接口或者微服务。 除此之外&#xff0c;webman 还支持自定义进程&am…

Obsidian git sync error / Obsidian git 同步失敗

Issue: commit due to empty commit message Solution 添加commit資訊&#xff0c;確保不留空白 我的設置&#xff1a;auto-backup: {{hostname}}/{{date}}/

Scala尾递归解决爆栈问题

引言 我在上篇中详细的讲了递归的一系列问题&#xff0c;多路递归&#xff0c;爆栈问题&#xff0c;尾递归优化等&#xff0c;今天就实际演示一下尾递归是如何解决爆栈问题的&#xff0c;以及它的原理是什么&#xff1f; 支持尾递归优化的语言 尾递归是一种特殊的递归形式,如果…

SpringBoot开发——整合Logbook进行HTTP API请求响应日志输出

文章目录 1. 简介依赖管理2. 实战案例2.1 基本用法2.2 结合Logback日志记录到文件2.3 自定义核心类Logbook2.4 自定义日志输出Sink2.5 与RestTemplate集成1. 简介 记录HTTP API请求响应日志对于监控、调试和性能优化至关重要。它帮助开发者追踪API的使用情况,包括请求来源、参…

接口自动化测试推荐用什么框架?

在推荐接口自动化测试框架时&#xff0c;需要考虑多个因素&#xff0c;包括项目需求、技术栈、团队经验和个人偏好。 以下是几个常用的接口自动化测试框架供你参考&#xff1a; Postman&#xff1a; Postman是一个功能强大且易于上手的接口测试工具&#xff0c;它提供了许多…