分类预测|基于麻雀优化支持向量机的Adaboost集成的数据分类预测Matlab程序SSA-SVM-Adaboost

分类预测|基于麻雀优化支持向量机的Adaboost集成的数据分类预测Matlab程序SSA-SVM-Adaboost

文章目录

  • 一、基本原理
      • SSA-SVM-Adaboost 分类预测原理和流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

一、基本原理

SSA-SVM-Adaboost 分类预测原理和流程

1. 麻雀优化算法(SSA)

原理

  • 麻雀优化算法(SSA):一种群体智能优化算法,模拟麻雀觅食行为。主要特点是高效、适应性强、易于实现。
  • 过程
    • 个体位置更新:麻雀个体的位置根据觅食行为和环境信息进行更新。
    • 觅食行为:模拟麻雀的觅食行为来探索解空间,寻找最优解。
    • 适应度评估:根据目标函数评估每个麻雀个体的位置优劣。

应用

  • 在SSA-SVM-Adaboost中,SSA用于优化支持向量机(SVM)的超参数,如惩罚参数和核函数参数。

2. 支持向量机(SVM)

原理

  • SVM:一种监督学习模型,用于分类和回归任务。通过构建一个最佳的超平面将不同类别的样本分开。
  • 结构
    • 超平面:在特征空间中将样本分类的界限。
    • 支持向量:在决策边界附近的样本点,用于构建和优化超平面。
    • 核函数:用于将数据映射到更高维空间,以处理非线性分类问题。

应用

  • SVM用于构建分类模型,将数据点分为不同的类别,并通过训练得到最优的分类超平面。

3. AdaBoost

原理

  • AdaBoost(Adaptive Boosting):一种集成学习方法,通过加权组合多个弱分类器形成一个强分类器。
  • 过程
    • 训练弱分类器:依次训练一系列简单的分类器(弱分类器),每个分类器关注前一个分类器错误分类的样本。
    • 加权更新:每个弱分类器的权重和样本的权重根据分类器的性能进行调整。
    • 加权投票:将多个弱分类器的预测结果进行加权投票,得到最终的分类结果。

应用

  • AdaBoost用于提高分类模型的准确率,通过组合多个弱分类器来减少预测误差。

4. SSA-SVM-Adaboost模型流程

  1. 数据预处理

    • 数据清洗:处理缺失值、异常值等。
    • 特征选择/提取:选择相关特征或进行特征提取。
    • 标准化:对数据进行标准化处理,以确保模型的稳定性和有效性。
  2. 超参数优化(SSA)

    • 定义优化目标:例如SVM分类的准确率或交叉验证中的表现。
    • 初始化:设置SSA算法的初始参数,包括个体数量和迭代次数。
    • 个体更新:模拟麻雀的觅食行为来更新个体位置,探索超参数空间。
    • 适应度评估:使用SVM在训练集上的性能(如准确率)来评估每个个体。
    • 最优解选择:根据适应度评估选择最佳超参数组合。
  3. SVM模型训练

    • 超参数配置:使用SSA优化得到的超参数配置(如惩罚参数、核函数类型等)。
    • 训练模型:在训练集上训练SVM模型,优化分类超平面。
    • 模型验证:使用交叉验证等方法验证SVM模型的性能。
  4. AdaBoost集成

    • 训练弱分类器:使用SVM作为基础分类器,训练多个弱分类器。
    • 调整权重:根据每个弱分类器的表现更新样本权重和分类器权重。
    • 组合分类器:将多个弱分类器的结果加权组合,形成最终的强分类器。
  5. 模型预测和评估

    • 预测:用训练好的SSA-SVM-Adaboost模型对测试集进行预测。
    • 评估:使用准确率、F1分数、混淆矩阵等指标评估模型性能。
  6. 结果分析和调整

    • 分析结果:评估模型在各个指标上的表现,进行详细分析。
    • 调整优化:根据评估结果对模型进行调整,必要时重新进行超参数优化和模型训练。

总结

SSA-SVM-Adaboost模型结合了麻雀优化算法(SSA)、支持向量机(SVM)和AdaBoost集成学习方法。SSA用于优化SVM的超参数,SVM用于构建分类模型,AdaBoost通过集成多个弱分类器提高分类性能。整个流程包括数据预处理、超参数优化、SVM训练、AdaBoost集成、模型预测和评估,旨在实现高效且准确的分类预测。

二、实验结果

SSA-SVM-Adaboost分类结果
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/53893.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

408算法题leetcode--第二天

1281. 整数的各位积和之差 1281. 整数的各位积和之差\思路:模拟,用取余获取每一位数时间复杂度:O(n的位数) O(logn),空间复杂度:O(1) class Solution { public:int subtractProductAndSum(int n) {int mul 1, sum …

开源FormCreate低代码表单组件的配置项和事件的详解

在使用开源FormCreate低代码表单时,您可以通过各种 props 来定制表单的行为和外观。这些参数允许您控制表单的生成规则、配置选项、双向数据绑定等,为复杂的表单场景提供了强大的支持。 源码地址: Github | Gitee FormCreate组件Props 以下是常用的 pr…

由于安装nvm 引发的vue : 无法将“vue”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。

🎈亲爱的读者朋友们: 如果你觉得这篇文章对你有所帮助,恳请你为我点个赞👍。你的每一个赞都是对我辛勤创作的认可,是我继续前行的动力源泉。 同时,也欢迎你关注我的 CSDN 博客。在这里,我会持续…

探索数据可视化的奥秘:Seaborn库的魔力

文章目录 探索数据可视化的奥秘:Seaborn库的魔力背景:为何选择Seaborn?Seaborn是什么?如何安装Seaborn?简单函数介绍与示例场景应用示例常见问题与解决方案总结 探索数据可视化的奥秘:Seaborn库的魔力 背景…

深度剖析iOS渲染

iOS App 图形图像渲染的基本流程: 1.CPU:完成对象的创建和销毁、对象属性的调整、布局计算、文本的计算和排版、图片的格式转换和解码、图像的绘制。 2.GPU:GPU拿到CPU计算好的显示内容,完成纹理的渲染, 渲染完成后将渲…

c# Csv文件读写示例,如果文件存在追加写入

功能 1.写入 2.读取 导出文件效果 调用示例 注意示例中的ToDataTable()方法是自己的封装的扩展方法&#xff0c;源码在集合扩展方法-CSDN博客 private List<MarkDataModel> createMarkDataList(int count){var markDataModels new List<MarkDataModel>();for (…

Linux计算文件权限的mode和umask

文章目录 文件权限文件权限的三类用户文件权限的三种类型mode 的格式常见的权限设置示例 umask的作用umask 的作用例子常见 umask 设置 通过位操作计算权限解释公式的背景位操作解释具体例子 文件权限 在 Unix/Linux 系统中&#xff0c;文件权限通过 mode 来指定&#xff0c;通…

LINUX下载编译zlog

下载 Tags HardySimpson/zlog GitHub 解压编译 make 检查 $ ll src/libzlog.a -rw-rw-r-- 1 weiyu weiyu 745782 9月 9 19:17 src/libzlog.a

Python青少年简明教程:类和对象入门

Python青少年简明教程&#xff1a;类和对象入门 Python支持多种编程范式&#xff08;programming paradigms&#xff09;&#xff0c;即支持多种不同的编程风格和方法。初学者开始重点学习关注的编程范式&#xff0c;一般而言是面向过程编程和面向对象编程。面向过程编程&#…

RTMP播放器延迟最低可以做到多少?

技术背景 RTMP播放器的延迟可以受到多种因素的影响&#xff0c;包括网络状况、推流设置、播放器配置以及CDN分发等。因此&#xff0c;RTMP播放器的延迟并不是一个固定的数值&#xff0c;而是可以在一定范围内变化的。 正常情况下&#xff0c;网上大多看到的&#xff0c;针对R…

email2case生成case的过程是以哪个用户的触发的

在 Salesforce 中&#xff0c;通过 Email-to-Case 生成的 Case 其实是由一个特定的用户在后台系统中触发的&#xff0c;这个用户通常称为 Automated Case User。这个用户负责代表系统执行 Email-to-Case 的所有自动化操作。 1. Automated Case User Automated Case User 是一…

docker 重启容器且修改服务映射端口

要重启 Docker 容器并修改服务的映射端口,可以按照以下步骤进行操作: 1. 停止当前运行的容器 如果你想重新配置端口,通常需要先停止当前运行的容器。你可以使用以下命令停止容器: docker stop <container_name_or_id>2. 删除现有容器 为了修改端口映射,你需要删…

小琳AI课堂:LLaMA 3.1 开源大模型的全新里程碑

引言 大家好&#xff0c;这里是小琳AI课堂&#xff01;今天我们要聊的是Meta最新发布的开源大模型LLaMA 3.1。这个版本在AI界掀起了不小的波澜&#xff0c;不仅在参数规模上有显著提升&#xff0c;还在多项性能上实现了突破。让我们一起来看看LLaMA 3.1带来的新变化和意义吧&a…

爆改YOLOv8|利用SCConv改进yolov8-即轻量又涨点

1&#xff0c;本文介绍 SCConv&#xff08;空间和通道重构卷积&#xff09;是一种高效的卷积模块&#xff0c;旨在优化卷积神经网络&#xff08;CNN&#xff09;的性能&#xff0c;通过减少空间和通道的冗余来降低计算资源的消耗。该模块由两个核心组件构成&#xff1a; 空间重…

PHP轻量级高性能HTTP服务框架 - webman

摘要 webman 是一款基于 workerman 开发的高性能 HTTP 服务框架。webman 用于替代传统的 php-fpm 架构&#xff0c;提供超高性能可扩展的 HTTP 服务。你可以用 webman 开发网站&#xff0c;也可以开发 HTTP 接口或者微服务。 除此之外&#xff0c;webman 还支持自定义进程&am…

策略模式实现搜索功能

概念&#xff1a; 策略模式是一种行为设计模式&#xff0c;用于定义一系列算法&#xff0c;将他们封装起来&#xff0c;并使他们可以互相替换。使用策略模式可以让代码更加灵活&#xff0c;且易于扩展和维护 背景&#xff1a; 假设你有一个功能需要多种不同的算法或行为实现…

Obsidian git sync error / Obsidian git 同步失敗

Issue: commit due to empty commit message Solution 添加commit資訊&#xff0c;確保不留空白 我的設置&#xff1a;auto-backup: {{hostname}}/{{date}}/

Scala尾递归解决爆栈问题

引言 我在上篇中详细的讲了递归的一系列问题&#xff0c;多路递归&#xff0c;爆栈问题&#xff0c;尾递归优化等&#xff0c;今天就实际演示一下尾递归是如何解决爆栈问题的&#xff0c;以及它的原理是什么&#xff1f; 支持尾递归优化的语言 尾递归是一种特殊的递归形式,如果…

SpringBoot开发——整合Logbook进行HTTP API请求响应日志输出

文章目录 1. 简介依赖管理2. 实战案例2.1 基本用法2.2 结合Logback日志记录到文件2.3 自定义核心类Logbook2.4 自定义日志输出Sink2.5 与RestTemplate集成1. 简介 记录HTTP API请求响应日志对于监控、调试和性能优化至关重要。它帮助开发者追踪API的使用情况,包括请求来源、参…

接口自动化测试推荐用什么框架?

在推荐接口自动化测试框架时&#xff0c;需要考虑多个因素&#xff0c;包括项目需求、技术栈、团队经验和个人偏好。 以下是几个常用的接口自动化测试框架供你参考&#xff1a; Postman&#xff1a; Postman是一个功能强大且易于上手的接口测试工具&#xff0c;它提供了许多…