1. 背景:
使用 mindspore 学习神经网络,打卡第 15 天;主要内容也依据 mindspore 的学习记录。
2. Vision Transformer 介绍:
mindspore 实现 VisionTransformer 图像分类;VisionTransformer 论文地址
-
VisionTransformer (ViT) 基本介绍:
Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers 的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。
ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。 -
特点:
a. 原图像被划分为多个patch(图像块)后,将二维 patch(不考虑channel)转换为一维向量,再加上类别向量与位置向量作为模型输入;
b. 模型主体的Block结构是基于Transformer的Encoder结构,但是调整了Normalization的位置,其中,最主要的结构依然是Multi-head Attention结构;
c. 模型在Blocks堆叠后接全连接层,接受类别向量的输出作为输入并用于分类。通常情况下,我们将最后的全连接层称为Head,Transformer Encoder部分为backbone。 -
模型结构:
-
Transformer 的整体架构:
使用堆叠自注意力和逐点全连接层作为编码器和解码器,分别如图的左半部分和右半部分所示.
3. 具体实现:
3.1 数据下载:
使用 ImageNet 中的数据集子集作为数据集。
import os
from download import download
import mindspore as ms
from mindspore.dataset import ImageFolderDataset
import mindspore.dataset.vision as transformsdataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/vit_imagenet_dataset.zip"
path = "./"path = download(dataset_url, path, kind="zip", replace=True)data_path = './dataset/'
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]dataset_train = ImageFolderDataset(os.path.join(data_path, "train"), shuffle=True)trans_train = [transforms.RandomCropDecodeResize(size=224,scale=(0.08, 1.0),ratio=(0.75, 1.333)),transforms.RandomHorizontalFlip(prob=0.5),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_train = dataset_train.map(operations=trans_train, input_columns=["image"])
dataset_train = dataset_train.batch(batch_size=16, drop_remainder=True)
3.2 数据前处理:
对数据集做处理:
- 随机采样:
随机采样一个区域,使采样区域与原始图像最小交并比重叠为:0.1, 0.3, 0.5, 0.7, 0.9;随机采样一个区域;
- 数据集创建:
3.2 Attension 模块:
其核心内容是为输入向量的每个单词学习一个权重。通过给定一个任务相关的查询向量Query向量,计算Query和各个Key的相似性或者相关性得到注意力分布,即得到每个Key对应Value的权重系数,然后对Value进行加权求和得到最终的Attention数值。具体如下:
a. 最初的输入向量首先会经过Embedding层映射成Q(Query),K(Key),V(Value)三个向量,由于是并行操作,所以代码中是映射成为dim x 3的向量然后进行分割,换言之,如果你的输入向量为一个向量序列(x_1,x_2,x_3),其中的x_1,x_2,x_3 都是一维向量,那么每一个一维向量都会经过 Embedding 层映射出Q,K,V 三个向量,只是 Embedding 矩阵不同,矩阵参数也是通过学习得到的。**这里大家可以认为,Q,K,V三个矩阵是发现向量之间关联信息的一种手段,需要经过学习得到,至于为什么是Q,K,V三个,主要是因为需要两个向量点乘以获得权重,又需要另一个向量来承载权重向加的结果,所以,最少需要3个矩阵。
(图片来源于 mindspore)
b. 自注意力机制的自注意主要体现在它的Q,K,V都来源于其自身,也就是该过程是在提取输入的不同顺序的向量的联系与特征,最终通过不同顺序向量之间的联系紧密性(Q与K乘积经过Softmax的结果)来表现出来.
(图片来源于 mindspore)
c. 其最终输出则是通过V这个映射后的向量与Q,K经过Softmax结果进行weight sum获得,这个过程可以理解为在全局上进行自注意表示.
(图片来源于 mindspore)
多头注意力机制就是将原本self-Attention处理的向量分割为多个Head进行处理;
多头注意力机制在保持参数总量不变的情况下,将同样的query, key和value映射到原来的高维空间(Q,K,V)的不同子空间(Q_0,K_0,V_0)中进行自注意力的计算,最后再合并不同子空间中的注意力信息。
from mindspore import nn, opsclass Attention(nn.Cell):def __init__(self,dim: int,num_heads: int = 8,keep_prob: float = 1.0,attention_keep_prob: float = 1.0):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = ms.Tensor(head_dim ** -0.5)self.qkv = nn.Dense(dim, dim * 3)self.attn_drop = nn.Dropout(p=1.0-attention_keep_prob)self.out = nn.Dense(dim, dim)self.out_drop = nn.Dropout(p=1.0-keep_prob)self.attn_matmul_v = ops.BatchMatMul()self.q_matmul_k = ops.BatchMatMul(transpose_b=True)self.softmax = nn.Softmax(axis=-1)def construct(self, x):"""Attention construct."""b, n, c = x.shapeqkv = self.qkv(x)qkv = ops.reshape(qkv, (b, n, 3, self.num_heads, c // self.num_heads))qkv = ops.transpose(qkv, (2, 0, 3, 1, 4))q, k, v = ops.unstack(qkv, axis=0)attn = self.q_matmul_k(q, k)attn = ops.mul(attn, self.scale)attn = self.softmax(attn)attn = self.attn_drop(attn)out = self.attn_matmul_v(attn, v)out = ops.transpose(out, (0, 2, 1, 3))out = ops.reshape(out, (b, n, c))out = self.out(out)out = self.out_drop(out)return out
3.3 Transformer Encoder
实现 Self-Attention 结构之后,通过与Feed Forward,Residual Connection等结构的拼接就可以形成Transformer的基础结构。
from typing import Optional, Dictclass FeedForward(nn.Cell):def __init__(self,in_features: int,hidden_features: Optional[int] = None,out_features: Optional[int] = None,activation: nn.Cell = nn.GELU,keep_prob: float = 1.0):super(FeedForward, self).__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.dense1 = nn.Dense(in_features, hidden_features)self.activation = activation()self.dense2 = nn.Dense(hidden_features, out_features)self.dropout = nn.Dropout(p=1.0-keep_prob)def construct(self, x):"""Feed Forward construct."""x = self.dense1(x)x = self.activation(x)x = self.dropout(x)x = self.dense2(x)x = self.dropout(x)return xclass ResidualCell(nn.Cell):def __init__(self, cell):super(ResidualCell, self).__init__()self.cell = celldef construct(self, x):"""ResidualCell construct."""return self.cell(x) + xclass TransformerEncoder(nn.Cell):def __init__(self,dim: int,num_layers: int,num_heads: int,mlp_dim: int,keep_prob: float = 1.,attention_keep_prob: float = 1.0,drop_path_keep_prob: float = 1.0,activation: nn.Cell = nn.GELU,norm: nn.Cell = nn.LayerNorm):super(TransformerEncoder, self).__init__()layers = []for _ in range(num_layers):normalization1 = norm((dim,))normalization2 = norm((dim,))attention = Attention(dim=dim,num_heads=num_heads,keep_prob=keep_prob,attention_keep_prob=attention_keep_prob)feedforward = FeedForward(in_features=dim,hidden_features=mlp_dim,activation=activation,keep_prob=keep_prob)layers.append(nn.SequentialCell([ResidualCell(nn.SequentialCell([normalization1, attention])),ResidualCell(nn.SequentialCell([normalization2, feedforward]))]))self.layers = nn.SequentialCell(layers)def construct(self, x):"""Transformer construct."""return self.layers(x)
3.4 ViT 模型:
- 图片划分成 patch :
a. 通过将输入图像在每个channel上划分为16*16个patch,这一步是通过卷积操作来完成的,当然也可以人工进行划分,但卷积操作也可以达到目的同时还可以进行一次而外的数据处理;
b. 再将每一个patch的矩阵拉伸成为一个一维向量,从而获得了近似词向量堆叠的效果.
class PatchEmbedding(nn.Cell):MIN_NUM_PATCHES = 4def __init__(self,image_size: int = 224,patch_size: int = 16,embed_dim: int = 768,input_channels: int = 3):super(PatchEmbedding, self).__init__()self.image_size = image_sizeself.patch_size = patch_sizeself.num_patches = (image_size // patch_size) ** 2self.conv = nn.Conv2d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)def construct(self, x):"""Path Embedding construct."""x = self.conv(x)b, c, h, w = x.shapex = ops.reshape(x, (b, c, h * w))x = ops.transpose(x, (0, 2, 1))return x
- pos_embedding
a. class_embedding主要借鉴了BERT模型的用于文本分类时的思想,在每一个word vector之前增加一个类别值,通常是加在向量的第一位,上一步得到的196维的向量加上class_embedding后变为197维。
b. 增加的class_embedding是一个可以学习的参数,经过网络的不断训练,最终以输出向量的第一个维度的输出来决定最后的输出类别;由于输入是16 x 16个patch,所以输出进行分类时是取 16 x 16个class_embedding进行分类。
c. pos_embedding也是一组可以学习的参数,会被加入到经过处理的patch矩阵中。
d. 由于pos_embedding也是可以学习的参数,所以它的加入类似于全链接网络和卷积的bias。这一步就是创造一个长度维197的可训练向量加入到经过class_embedding的向量中。
实际上,pos_embedding总共有4种方案。但是经过作者的论证,只有加上pos_embedding和不加pos_embedding有明显影响,至于pos_embedding是一维还是二维对分类结果影响不大,所以,在我们的代码中,也是采用了一维的pos_embedding,由于class_embedding是加在pos_embedding之前,所以pos_embedding的维度会比patch拉伸后的维度加1。
- 完整的 ViT 模型
from mindspore.common.initializer import Normal
from mindspore.common.initializer import initializer
from mindspore import Parameterdef init(init_type, shape, dtype, name, requires_grad):"""Init."""initial = initializer(init_type, shape, dtype).init_data()return Parameter(initial, name=name, requires_grad=requires_grad)class ViT(nn.Cell):def __init__(self,image_size: int = 224,input_channels: int = 3,patch_size: int = 16,embed_dim: int = 768,num_layers: int = 12,num_heads: int = 12,mlp_dim: int = 3072,keep_prob: float = 1.0,attention_keep_prob: float = 1.0,drop_path_keep_prob: float = 1.0,activation: nn.Cell = nn.GELU,norm: Optional[nn.Cell] = nn.LayerNorm,pool: str = 'cls') -> None:super(ViT, self).__init__()self.patch_embedding = PatchEmbedding(image_size=image_size,patch_size=patch_size,embed_dim=embed_dim,input_channels=input_channels)num_patches = self.patch_embedding.num_patchesself.cls_token = init(init_type=Normal(sigma=1.0),shape=(1, 1, embed_dim),dtype=ms.float32,name='cls',requires_grad=True)self.pos_embedding = init(init_type=Normal(sigma=1.0),shape=(1, num_patches + 1, embed_dim),dtype=ms.float32,name='pos_embedding',requires_grad=True)self.pool = poolself.pos_dropout = nn.Dropout(p=1.0-keep_prob)self.norm = norm((embed_dim,))self.transformer = TransformerEncoder(dim=embed_dim,num_layers=num_layers,num_heads=num_heads,mlp_dim=mlp_dim,keep_prob=keep_prob,attention_keep_prob=attention_keep_prob,drop_path_keep_prob=drop_path_keep_prob,activation=activation,norm=norm)self.dropout = nn.Dropout(p=1.0-keep_prob)self.dense = nn.Dense(embed_dim, num_classes)def construct(self, x):"""ViT construct."""x = self.patch_embedding(x)cls_tokens = ops.tile(self.cls_token.astype(x.dtype), (x.shape[0], 1, 1))x = ops.concat((cls_tokens, x), axis=1)x += self.pos_embeddingx = self.pos_dropout(x)x = self.transformer(x)x = self.norm(x)x = x[:, 0]if self.training:x = self.dropout(x)x = self.dense(x)return x
3.5 模型训练与推理:
- 定义损失函数
- 定义优化器
- 回调函数
from mindspore.nn import LossBase
from mindspore.train import LossMonitor, TimeMonitor, CheckpointConfig, ModelCheckpoint
from mindspore import train# define super parameter
epoch_size = 10
momentum = 0.9
num_classes = 1000
resize = 224
step_size = dataset_train.get_dataset_size()# construct model
network = ViT()# load ckpt
vit_url = "https://download.mindspore.cn/vision/classification/vit_b_16_224.ckpt"
path = "./ckpt/vit_b_16_224.ckpt"vit_path = download(vit_url, path, replace=True)
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)# define learning rate
lr = nn.cosine_decay_lr(min_lr=float(0),max_lr=0.00005,total_step=epoch_size * step_size,step_per_epoch=step_size,decay_epoch=10)# define optimizer
network_opt = nn.Adam(network.trainable_params(), lr, momentum)# define loss function
class CrossEntropySmooth(LossBase):"""CrossEntropy."""def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):super(CrossEntropySmooth, self).__init__()self.onehot = ops.OneHot()self.sparse = sparseself.on_value = ms.Tensor(1.0 - smooth_factor, ms.float32)self.off_value = ms.Tensor(1.0 * smooth_factor / (num_classes - 1), ms.float32)self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)def construct(self, logit, label):if self.sparse:label = self.onehot(label, ops.shape(logit)[1], self.on_value, self.off_value)loss = self.ce(logit, label)return lossnetwork_loss = CrossEntropySmooth(sparse=True,reduction="mean",smooth_factor=0.1,num_classes=num_classes)# set checkpoint
ckpt_config = CheckpointConfig(save_checkpoint_steps=step_size, keep_checkpoint_max=100)
ckpt_callback = ModelCheckpoint(prefix='vit_b_16', directory='./ViT', config=ckpt_config)# initialize model
# "Ascend + mixed precision" can improve performance
ascend_target = (ms.get_context("device_target") == "Ascend")
if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O0")# train model
model.train(epoch_size,dataset_train,callbacks=[ckpt_callback, LossMonitor(125), TimeMonitor(125)],dataset_sink_mode=False,)
3.6 模型的验证
与训练代码类似。以 Top_1_Accuracy 和 Top_5_Accuracy 评价指标来评估模型的表现;
dataset_val = ImageFolderDataset(os.path.join(data_path, "val"), shuffle=True)trans_val = [transforms.Decode(),transforms.Resize(224 + 32),transforms.CenterCrop(224),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_val = dataset_val.map(operations=trans_val, input_columns=["image"])
dataset_val = dataset_val.batch(batch_size=16, drop_remainder=True)# construct model
network = ViT()# load ckpt
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)network_loss = CrossEntropySmooth(sparse=True,reduction="mean",smooth_factor=0.1,num_classes=num_classes)# define metric
eval_metrics = {'Top_1_Accuracy': train.Top1CategoricalAccuracy(),'Top_5_Accuracy': train.Top5CategoricalAccuracy()}if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O0")# evaluate model
result = model.eval(dataset_val)
print(result)
3.6 模型推理:
- 进行模型推理时,需要定义数据预处理方法;
dataset_infer = ImageFolderDataset(os.path.join(data_path, "infer"), shuffle=True)trans_infer = [transforms.Decode(),transforms.Resize([224, 224]),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_infer = dataset_infer.map(operations=trans_infer,input_columns=["image"],num_parallel_workers=1)
dataset_infer = dataset_infer.batch(1)
- 调用模型的 predict 方法进行模型推理;推理过程中,使用 index2label 获取标签,将结果写到对于图片上。
import os
import pathlib
import cv2
import numpy as np
from PIL import Image
from enum import Enum
from scipy import ioclass Color(Enum):"""dedine enum color."""red = (0, 0, 255)green = (0, 255, 0)blue = (255, 0, 0)cyan = (255, 255, 0)yellow = (0, 255, 255)magenta = (255, 0, 255)white = (255, 255, 255)black = (0, 0, 0)def check_file_exist(file_name: str):"""check_file_exist."""if not os.path.isfile(file_name):raise FileNotFoundError(f"File `{file_name}` does not exist.")def color_val(color):"""color_val."""if isinstance(color, str):return Color[color].valueif isinstance(color, Color):return color.valueif isinstance(color, tuple):assert len(color) == 3for channel in color:assert 0 <= channel <= 255return colorif isinstance(color, int):assert 0 <= color <= 255return color, color, colorif isinstance(color, np.ndarray):assert color.ndim == 1 and color.size == 3assert np.all((color >= 0) & (color <= 255))color = color.astype(np.uint8)return tuple(color)raise TypeError(f'Invalid type for color: {type(color)}')def imread(image, mode=None):"""imread."""if isinstance(image, pathlib.Path):image = str(image)if isinstance(image, np.ndarray):passelif isinstance(image, str):check_file_exist(image)image = Image.open(image)if mode:image = np.array(image.convert(mode))else:raise TypeError("Image must be a `ndarray`, `str` or Path object.")return imagedef imwrite(image, image_path, auto_mkdir=True):"""imwrite."""if auto_mkdir:dir_name = os.path.abspath(os.path.dirname(image_path))if dir_name != '':dir_name = os.path.expanduser(dir_name)os.makedirs(dir_name, mode=777, exist_ok=True)image = Image.fromarray(image)image.save(image_path)def imshow(img, win_name='', wait_time=0):"""imshow"""cv2.imshow(win_name, imread(img))if wait_time == 0: # prevent from hanging if windows was closedwhile True:ret = cv2.waitKey(1)closed = cv2.getWindowProperty(win_name, cv2.WND_PROP_VISIBLE) < 1# if user closed window or if some key pressedif closed or ret != -1:breakelse:ret = cv2.waitKey(wait_time)def show_result(img: str,result: Dict[int, float],text_color: str = 'green',font_scale: float = 0.5,row_width: int = 20,show: bool = False,win_name: str = '',wait_time: int = 0,out_file: Optional[str] = None) -> None:"""Mark the prediction results on the picture."""img = imread(img, mode="RGB")img = img.copy()x, y = 0, row_widthtext_color = color_val(text_color)for k, v in result.items():if isinstance(v, float):v = f'{v:.2f}'label_text = f'{k}: {v}'cv2.putText(img, label_text, (x, y), cv2.FONT_HERSHEY_COMPLEX,font_scale, text_color)y += row_widthif out_file:show = Falseimwrite(img, out_file)if show:imshow(img, win_name, wait_time)def index2label():"""Dictionary output for image numbers and categories of the ImageNet dataset."""metafile = os.path.join(data_path, "ILSVRC2012_devkit_t12/data/meta.mat")meta = io.loadmat(metafile, squeeze_me=True)['synsets']nums_children = list(zip(*meta))[4]meta = [meta[idx] for idx, num_children in enumerate(nums_children) if num_children == 0]_, wnids, classes = list(zip(*meta))[:3]clssname = [tuple(clss.split(', ')) for clss in classes]wnid2class = {wnid: clss for wnid, clss in zip(wnids, clssname)}wind2class_name = sorted(wnid2class.items(), key=lambda x: x[0])mapping = {}for index, (_, class_name) in enumerate(wind2class_name):mapping[index] = class_name[0]return mapping# Read data for inference
for i, image in enumerate(dataset_infer.create_dict_iterator(output_numpy=True)):image = image["image"]image = ms.Tensor(image)prob = model.predict(image)label = np.argmax(prob.asnumpy(), axis=1)mapping = index2label()output = {int(label): mapping[int(label)]}print(output)show_result(img="./dataset/infer/n01440764/ILSVRC2012_test_00000279.JPEG",result=output,out_file="./dataset/infer/ILSVRC2012_test_00000279.JPEG")
4. 相关链接:
- ViT 论文地址
- Transformer 论文地址
- https://xihe.mindspore.cn/events/mindspore-training-camp