C++之STL-list+模拟实现

目录

一、list的介绍和基本使用的方法

1.1 list的介绍

1.2 list的基本使用方法

1.2.1  构造方法

 1.2.2 迭代器

1.2.3 容量相关的接口

1.2.4 增删查改的相关接口

1.3 关于list迭代器失效的问题

二、模拟实现list

2.1 节点类

2.2 迭代器类

2.3 主类list类

2.3.1 成员变量的建立

 2.3.2 迭代器的建立和相关接口的实现

2.3.3 增删查改以及容量接口的实现

1.size()

 2.empty()

3.insert()

4.push_back()

5.pop_back()

6.erase()

7.clear()

8.swap()

2.3.4 构造函数和析构函数


一、list的介绍和基本使用的方法

1.1 list的介绍

同样的给大家上图。

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  3. . list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;(简单来说就是不支持随机访问)。

1.2 list的基本使用方法

1.2.1  构造方法

常用的构造方法主要是以下4种:

  1. list (size_type n, const value_type& val = value_type())   
    构造的list中包含n个值为val的元素
    list<int> st(10,1);
  2. list()
    构造空的list
    list<int>  st;
  3. list (const list& x)
    拷贝构造函数
    list<int>  l1(10,1);
    list<int>  l2(l1);
  4. list (InputIterator first, InputIterator last)
    用[first, last)区间中的元素构造list,即使用迭代器进行构造
    list<int>  l1(10,1);
    list<int>  l2(l1.begin(),l1.end());

 1.2.2 迭代器

       对于list的迭代器,我们可以暂且认为其是指向list中某个节点的指针,等到模拟实现的时候再给大家详细介绍。这里大概给大家画一下begin()和end()的指向。

1.2.3 容量相关的接口

  1. empty()
    检测list是否为空,是返回true,否则返回false
  2. size()
    返回list中有效节点的个数

1.2.4 增删查改的相关接口

  1. push_front()

    在list首元素前插入值为val的元素
  2.  pop_front()

    删除list中第一个元素

  3. push_back()
    在list尾部插入值为val的元素
  4. pop_back()
    删除list中最后一个元素
  5. insert()
    在list position 位置中插入值为val的元素
  6. erase()
    删除list position位置的元素
  7. swap()
    交换两个list中的元素
  8. clear()
    清空list中的有效元素

1.3 关于list迭代器失效的问题

       迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。
 

二、模拟实现list

2.1 节点类

       这里采取的是带头双向列表,如果你不是很了解的话可以参考一下http://t.csdnimg.cn/uSKci
我的这篇文章。

       话不多说,上代码。

template<class T>struct ListNode{ListNode(const T& val = T()):_pPre(nullptr),_pNext(nullptr),_val(val){}ListNode<T>* _pPre;ListNode<T>* _pNext;T _val;};

       由于不知道模板参数,所以我们的默认初始化不能定死,而是采用了一个匿名对象,原本内置类型是没有类似于 T() 这种构造方式的,但是为了方便我们类的定义,祖师爷们特意进行了添加。

2.2 迭代器类

        当大家看到这个标题的时候就可能会疑惑了,为什么要重新定义一个迭代器类呢,为什么不像vector一样,直接对节点重命名不久好了吗?这确实是一个值得我们探讨的问题,要回答这个问题,我们还是要回到迭代器的本质,我在上节就有提到过:

       迭代器提供了一种统一的访问数据结构(如容器、数组、集合等)元素的方式,使得我们能够以统一的接口遍历和操作数据结构中的元素,而不必关心底层数据结构的实现细节。

       如果要满足这个需求,简单的重命名可不好使呀,首先就是范围for你无法支持,vector可以是因为其在内存中是连续的,其++和--都不需要进行重载,而list就不行,因为list所存储数据的内存是不连续的,你要是用老一套的方法肯定是不行的,所以我们才需要将list的迭代器单独封装起来,这恰恰就体现了C++中面向对象的思想。
       解决这个问题之后,我们又迎来了新的问题,const 迭代器我们该怎么实现呢?这时你肯定会说直加个const不就行了吗,答案是显而易见的,肯定不行,不然我就不会问了。那么为什么呢,那是因为这个迭代器是我们封装实现的,我们在list类中直接加const的话,相当于是对我们做的迭代器实例化出来的对象加了个const,那就是对我们所封装的节点加了个const,但节点是指针啊,要清楚,并不是指针不能动(不然范围for又死了),而是所指向的数据域不能改变,那我们应该怎么办呢?这里就需要好好的使用我们的模板了,看我的解决方案。    

 template<class T, class Ref, class Ptr>class ListIterator{typedef ListNode<T>* PNode;typedef ListIterator<T, Ref, Ptr> Self;public:ListIterator(PNode pNode = nullptr):_pNode(pNode){}ListIterator(const Self& l):_pNode(l._pNode){}Ref operator*(){return _pNode->_val;}Ptr operator->(){return &_pNode->_val;}Self& operator++(){_pNode = _pNode->_pNext;return *this;}Self operator++(int){Self tmp(*this);_pNode = _pNode->_pNext;return tmp;}Self& operator--(){_pNode = _pNode->_pPre;return *this;}Self operator--(int){Self tmp(*this);_pNode = _pNode->pPre;return tmp;}bool operator!=(const Self& l){return _pNode != l._pNode;}bool operator==(const Self& l){return _pNode == l._pNode;}PNode _pNode;};

       可以看的我的模板有三个参数template<class T, class Ref, class Ptr> 那这玩意有什么用呢,这后面两个参数主要作用于该类有返回节点数据域的成员函数,const对象和非const对象最大的区别就是一个内容无法被修改一个不受限制,而我们通过对节点的封装,使得外界通过迭代器访问我们数据域时,就一定会访问我们返回节点数据域的重载函数,而这样恰恰给我们模板提供了机会,我们可以根据模板传参去重载我们的返回值,这样也就实现了我们const迭代器的建立。但是这不是最妙的地方,因为要实现这个要求我们也可以复制粘贴改一下条件多写一个类就可以了,可当我们使用了模板之后,你会发现这部分工作就交给编译器去做了,实现了我们的代码复用,这就是泛型编程的好处。

2.3 主类list类

2.3.1 成员变量的建立

       这里我们主要的成员变量就是我们的哨兵位节点和我们有效节点size,为了方便初始化,我还加了一个专门初始化头节点的成员函数。

        private:void CreateHead(){_pHead = new Node();_pHead->_pNext = _pHead;_pHead->_pPre = _pHead;_size = 0;}PNode _pHead;size_t _size;

 2.3.2 迭代器的建立和相关接口的实现

有关迭代器的主要内容已经在刚刚讲的差不多了,这里我就不在过多的讲解了,直接上代码。

 public:typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T*> const_iterator;iterator begin(){return _pHead->_pNext;}iterator end(){return _pHead;}const_iterator begin() const{return _pHead->_pNext;}const_iterator end() const{return _pHead;}

2.3.3 增删查改以及容量接口的实现

       这里接口的实现和我们双向链表以及vector的实现方式很像,我这里就不啰嗦了,有问题可以参考http://t.csdnimg.cn/uSKci和http://t.csdnimg.cn/N3bhY或者私信问我也是可以的哦。

1.size()
        size_t size()const{return _size;}
 2.empty()
        bool empty()const{return _size == 0;}
3.insert()
iterator insert(iterator pos, const T& val){PNode tmp = new Node(val);PNode cur = pos._pNode;PNode pre = pos._pNode->_pPre;tmp->_pNext = cur;tmp->_pPre = pre;pre->_pNext = tmp;cur->_pPre = tmp;_size++;return tmp;}
4.push_back()
        void push_back(const T& val) { insert(end(), val); }
5.pop_back()
        void pop_back(){ erase(--end()); }
6.erase()
        iterator erase(iterator pos){PNode Next = pos._pNode->_pNext;PNode pre = pos._pNode->_pPre;pre->_pNext = Next;Next->_pPre = pre;_size--;return Next;}
7.clear()
void clear(){iterator it = begin();while (it != end()){it = erase(it);}}
8.swap()
        void swap(list<T>& l){std::swap(_pHead, l._pHead);std::swap(_size, l._size);}

2.3.4 构造函数和析构函数

废话不多说,直接开造!

list(){CreateHead();}list(int n, const T& value = T()){CreateHead();while (n--){push_back(value);}}template <class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);first++;}}list(const list<T>& l){CreateHead();for (auto ch : l){push_back(ch);}}list<T>& operator=(list<T> l) {CreateHead();swap(l);return *this;}~list(){clear();delete _pHead;_pHead = nullptr;_size = 0;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/5159.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++——数据类型笔记

在C编程中&#xff0c;了解各类数据类型也是至关重要的。下面我会总结一下C中的数据类型&#xff0c;包括基本类型&#xff0c;符合类型和自定义类型。方便自己整理和理解。 &#xff11;&#xff0c;基本类型 C中的基本类型是构建其他数据类型的基础&#xff0c;常见的基础类…

深圳消费扩容提质行动初见成效:多领域消费增长,商业环境持续优化

深圳市政府新闻办于近日召开发布会&#xff0c;深圳市商务局局长张非梦介绍了深圳市实施消费扩容提质行动的相关情况。根据发布会的内容&#xff0c;深圳市在今年一季度的消费市场展现出新气象和新活力&#xff0c;社消零总额达到2463.8亿元&#xff0c;其中新能源汽车、文化办…

多线程同步

1.多线程并发 1).多线程并发引例 #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <assert.h> #include <pthread.h>int wg0; void *fun(void *arg) {for(int i0;i<1000;i){wg;printf("wg%d\n",wg);} } in…

tp6.0 rabbitmq死信队列

rabbitMq交换机&#xff0c;队列情况&#xff0c;先手动创建 1. 创建普通交换机exchange&#xff0c;普通队列order_queue_expire&#xff0c;队列设置属性&#xff1a; 消息过期时间&#xff1a;60000毫秒&#xff0c;过期绑定dead_exchange交换机&#xff0c;routing_key:de…

适配器模式(不同类型的 MQ 消息 首次下单消息)

目录 定义 适配不同类型的 MQ 消息 注册开户MQ 内部订单MQ 第三⽅订单MQ 查询⽤户内部下单数量接⼝ 查询⽤户第三⽅下单⾸单接⼝ MQ消息体适配类 代码实现 测试验证 接⼝使⽤适配 代码实现 分别实现两个不同的接⼝ 内部商品接⼝ 第三⽅商品接⼝ 测试验证 定义 …

使用递归方式实现多级菜单树 Java实现

在Java中&#xff0c;使用递归来实现菜单树通常涉及到遍历原始菜单列表&#xff0c;并为每个菜单项找到其对应的子菜单项。这个过程可以通过创建一个方法来完成&#xff0c;该方法会检查每个菜单项的parentId&#xff0c;并将其作为子菜单项添加到具有相应id的父菜单项的childr…

web前端学习笔记2

2. 网页穿上美丽外衣 2.0 代码地址 https://gitee.com/qiangge95243611/java118/tree/master/web/day02 2.1 什么是CSS CSS (Cascading Style Sheets,层叠样式表),是一种用来为结构化文档(如 HTML 文档或 XML 应用)添加样式(字体、间距和颜色等)的计算机语言,CSS 文…

docker学习笔记7:centos docker安装mysql

在 CentOS 系统上使用 Docker 安装 MySQL 8 的过程相对简单。以下是一步步的指导: 1. 确保 Docker 已经安装 首先,你需要确保你的 CentOS 系统上已经安装了 Docker。可以通过以下命令检查 Docker 是否已经安装并且运行: sudo systemctl status docker如果 Docker 没有安装…

文件系统学习

软连接&#xff1a;可以跨不同的磁盘块&#xff0c;创建出不同的inode节点 应连接&#xff1a;相同的inode节点&#xff0c;不同的文件名字记录在父亲节点目录中 分区(fdisk)&#xff0c;格式化(mkfs)&#xff0c;挂载(mount)&#xff0c;大于2T分区&#xff08;parted&#…

FSNotes for Mac v6.7.1中文激活版:强大的笔记管理工具

FSNotes for Mac是一款功能强大的文本处理与笔记管理工具&#xff0c;为Mac用户提供了一个直观、高效的笔记记录和整理平台。 FSNotes for Mac v6.7.1中文激活版下载 FSNotes支持Markdown语法&#xff0c;使用户能够轻松设置笔记格式并添加链接、图像等元素&#xff0c;实现笔记…

前端调用WebSocket协议接口获取数据

目录 封装调用ws协议接口工具函数 页面调用 封装调用ws协议接口工具函数 params&#xff1a;请求参数cb&#xff1a;服务器请求成功返回数据的回调函数 function createWs(params, cb) {const ws new WebSocket("ws://124.222.224.186:8800");let timer null;// …

基于H.264的RTP打包中的组合封包以及分片封包结构图简介及抓包分析;FU-A FU-B STAP-A STAP-B简介;

H.264视频流的RTP封装类型分析&#xff1a; 前言&#xff1a; 1.RTP打包原则&#xff1a; RTP的包长度必须要小于MTU(最大传输单元)&#xff0c;IP协议中MTU的最大长度为1500字节。除去IP报头&#xff08;20字节&#xff09;、UDP报头&#xff08;8字节&#xff09;、RTP头&a…

C#编程模式之装饰模式

创作背景&#xff1a;朋友们&#xff0c;我们继续C#编程模式的学习&#xff0c;本文我们将一起探讨装饰模式。装饰模式也是一种结构型设计模式&#xff0c;它允许你通过在运行时向对象添加额外的功能&#xff0c;从而动态的修改对象的行为。装饰模式本质上还是继承的一种替换方…

机器学习-什么是 k-means?

1、什么是 k-means&#xff1f; k-means是一种无监督的分类学习算法。它的基本原理是以距离作为相似度的评价指标&#xff0c;用样本点到类别中心的误差平方和作为聚类好坏的评价指标&#xff0c;通过迭代的方法使总体分类的误差评分和函数达到最小的聚类方法。 2、 k-means聚…

设计模式 基本认识

文章目录 设计模式的作用设计模式三原则设计模式与类图设计模式的分类 设计模式的作用 设计模式是在软件设计过程中针对常见问题的解决方案的一种通用、可重用的解决方案。设计模式提供了一种经过验证的方法&#xff0c;可以帮助开发人员解决特定类型的问题&#xff0c;并在软…

【论文阅读】IPT:Pre-TrainedImageProcessingTransformer

Pre-TrainedImageProcessingTransformer 论文地址摘要1. 简介2.相关作品2.1。图像处理2.2。 Transformer 3. 图像处理3.1. IPT 架构3.2 在 ImageNet 上进行预训练 4. 实验4.1. 超分辨率4.2. Denoising 5. 结论与讨论 论文地址 1、论文地址 2、源码 摘要 随着现代硬件的计算能…

1394 笔记

RN节点工作模块&#xff0c;当接收到STOF包后开始计时&#xff0c;当达到节点的发送、接收、数据泵偏移时向应用层发送相应使能。并根据STOF判断CC的错误状态&#xff0c;只有以下条件全部满足时进入正常工作模式&#xff1a; 条件1&#xff0c;STOF消息的帧周期正确&#xff…

mybatis工程需要的pom.xml,以及@Data 、@BeforeEach、@AfterEach 的使用,简化mybatis

对 “mybatis - XxxMapper.java接口中方法的参数 和 返回值类型&#xff0c;怎样在 XxxMapper.xml 中配置的问题” 这篇文章做一下优化 这个pom.xml文件&#xff0c;就是上面说的这篇文章的父工程的pom.xml&#xff0c;即&#xff1a;下面这个pom.xml 是可以拿来就用的 <?…

7天入门Android开发之第1天——初识Android

一、Android系统 1.Linux内核层&#xff1a; 这是安卓系统的底层&#xff0c;它提供了基本的系统功能&#xff0c;如内存管理、进程管理、驱动程序模型等。安卓系统构建在Linux内核之上&#xff0c;借助于Linux的稳定性和安全性。 2.系统运行库层&#xff1a; 这一层包括了安卓…

Java高级面试问题及答案

Java高级面试问题及答案 1. 什么是Java中的多态性&#xff1f;如何实现多态性&#xff1f; 问题描述&#xff1a; 多态性是面向对象编程的重要概念之一&#xff0c;它允许不同类的对象对同一消息做出不同的响应。请简要说明Java中的多态性&#xff0c;并描述如何实现多态性。…