【PyTorch】图像多分类项目

【PyTorch】图像二分类项目

【PyTorch】图像二分类项目-部署

【PyTorch】图像多分类项目

【PyTorch】图像多分类项目部署

多类图像分类的目标是为一组固定类别中的图像分配标签。

目录

加载和处理数据

搭建模型

定义损失函数

定义优化器

训练和迁移学习

用随机权重进行训练

用预训练权重进行训练


加载和处理数据

将使用 PyTorch torchvision 包中提供的 STL-10 数据集,数据集中有 10 个类:飞机、鸟、车、猫、鹿、狗、马、猴、船、卡车。图像为96*96像素的RGB图像。数据集包含 5,000 张训练图像和 8,000 张测试图像。在训练数据集和测试数据集中,每个类分别有 500 和 800 张图像。

from torchvision import datasets
import torchvision.transforms as transforms
import ospath2data="./data"
# 如果数据路径不存在,则创建
if not os.path.exists(path2data):os.mkdir(path2data)# 定义数据转换
data_transformer = transforms.Compose([transforms.ToTensor()])# 从datasets库中导入STL10数据集,并指定数据集的路径、分割方式、是否下载以及数据转换器
train_ds=datasets.STL10(path2data, split='train',download=True,transform=data_transformer)# 打印数据形状
print(train_ds.data.shape)

 若数据集导入较慢可直接下载:http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz

import collections# 获取标签
y_train=[y for _,y in train_ds]# 统计标签
counter_train=collections.Counter(y_train)
print(counter_train)

# 加载数据
test0_ds=datasets.STL10(path2data, split='test', download=True,transform=data_transformer)
# 打印数据形状
print(test0_ds.data.shape)

# 导入StratifiedShuffleSplit模块
from sklearn.model_selection import StratifiedShuffleSplit# 创建StratifiedShuffleSplit对象,设置分割次数为1,测试集大小为0.2,随机种子为0
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=0)# 获取test0_ds的索引
indices=list(range(len(test0_ds)))# 获取test0_ds的标签
y_test0=[y for _,y in test0_ds]# 对索引和标签进行分割
for test_index, val_index in sss.split(indices, y_test0):# 打印测试集和验证集的索引print("test:", test_index, "val:", val_index)# 打印测试集和验证集的大小print(len(val_index),len(test_index))

# 从torch.utils.data中导入Subset类
from torch.utils.data import Subset# 从test0_ds中选取val_index索引的子集,赋值给val_ds
val_ds=Subset(test0_ds,val_index)
# 从test0_ds中选取test_index索引的子集,赋值给test_ds
test_ds=Subset(test0_ds,test_index)import collections
import numpy as np# 获取标签
y_test=[y for _,y in test_ds]
y_val=[y for _,y in val_ds]# 统计测试集和验证集的标签数量
counter_test=collections.Counter(y_test)
counter_val=collections.Counter(y_val)# 打印测试集和验证集的标签数量
print(counter_test)
print(counter_val)

from torchvision import utils
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline# 设置随机种子为0
np.random.seed(0)# 定义一个函数,用于显示图像
def show(img,y=None,color=True):# 将图像转换为numpy数组npimg = img.numpy()# 将图像的维度从(C,H,W)转换为(H,W,C)npimg_tr=np.transpose(npimg, (1,2,0))# 显示图像plt.imshow(npimg_tr)# 如果有标签,则显示标签if y is not None:plt.title("label: "+str(y))# 定义网格大小
grid_size=4
# 随机生成4个索引
rnd_inds=np.random.randint(0,len(train_ds),grid_size)
print("image indices:",rnd_inds)# 从训练集中获取这4个索引对应的图像和标签
x_grid=[train_ds[i][0] for i in rnd_inds]
y_grid=[train_ds[i][1] for i in rnd_inds]# 将这4个图像拼接成一个网格
x_grid=utils.make_grid(x_grid, nrow=4, padding=2)
print(x_grid.shape)# 调用helper函数显示网格
plt.figure(figsize=(10,10))
show(x_grid,y_grid)

 

# 设置随机种子为0 
np.random.seed(0)# 设置网格大小
grid_size=4
# 从验证数据集中随机选择grid_size个索引
rnd_inds=np.random.randint(0,len(val_ds),grid_size)
print("image indices:",rnd_inds)# 从验证数据集中选择对应的图像
x_grid=[val_ds[i][0] for i in rnd_inds]
# 从验证数据集中选择对应的标签
y_grid=[val_ds[i][1] for i in rnd_inds]# 将图像排列成网格
x_grid=utils.make_grid(x_grid, nrow=4, padding=2)
print(x_grid.shape)# 调用辅助函数
plt.figure(figsize=(10,10))
# 显示网格图像和标签
show(x_grid,y_grid)

 

 

import numpy as np# 计算训练集中每个样本的RGB均值
meanRGB=[np.mean(x.numpy(),axis=(1,2)) for x,_ in train_ds]  
# 计算训练集中每个样本的RGB标准差
stdRGB=[np.std(x.numpy(),axis=(1,2)) for x,_ in train_ds]  meanR=np.mean([m[0] for m in meanRGB])  # 计算所有样本的R通道均值的平均值
meanG=np.mean([m[1] for m in meanRGB])  
meanB=np.mean([m[2] for m in meanRGB])  stdR=np.mean([s[0] for s in stdRGB])  # 计算所有样本的R通道标准差的平均值
stdG=np.mean([s[1] for s in stdRGB])  
stdB=np.mean([s[2] for s in stdRGB])  print(meanR,meanG,meanB)  # 打印R、G、B通道的均值
print(stdR,stdG,stdB)  # 打印R、G、B通道的标准差

# 定义训练数据的转换器
train_transformer = transforms.Compose([# 随机水平翻转,翻转概率为0.5transforms.RandomHorizontalFlip(p=0.5),  # 随机垂直翻转,翻转概率为0.5transforms.RandomVerticalFlip(p=0.5),  # 将图像转换为张量transforms.ToTensor(),# 对图像进行归一化,均值和标准差分别为meanR, meanG, meanB和stdR, stdG, stdBtransforms.Normalize([meanR, meanG, meanB], [stdR, stdG, stdB])])# 定义测试数据的转换器
test0_transformer = transforms.Compose([# 将图像转换为张量transforms.ToTensor(),# 对图像进行归一化,均值和标准差分别为meanR, meanG, meanB和stdR, stdG, stdBtransforms.Normalize([meanR, meanG, meanB], [stdR, stdG, stdB]),])   # 将训练数据集的转换器赋值给训练数据集的transform属性
train_ds.transform=train_transformer
# 将测试数据集的转换器赋值给测试数据集的transform属性
test0_ds.transform=test0_transformerimport torch
import numpy as np
import matplotlib.pyplot as plt# 设置随机种子
np.random.seed(0)
torch.manual_seed(0)# 定义网格大小
grid_size=4# 从训练数据集中随机选择grid_size个样本的索引
rnd_inds=np.random.randint(0,len(train_ds),grid_size)
print("image indices:",rnd_inds)# 根据索引从训练数据集中获取对应的样本
x_grid=[train_ds[i][0] for i in rnd_inds]
y_grid=[train_ds[i][1] for i in rnd_inds]# 将样本转换为网格形式
x_grid=utils.make_grid(x_grid, nrow=4, padding=2)
print(x_grid.shape)# 创建一个10x10的图像
plt.figure(figsize=(10,10))
# 显示网格和对应的标签
show(x_grid,y_grid)

from torch.utils.data import DataLoader# 创建训练数据集的DataLoader,batch_size为32,shuffle为True,表示每次迭代时都会打乱数据集
train_dl = DataLoader(train_ds, batch_size=32, shuffle=True)
# 创建验证数据集的DataLoader,batch_size为64,shuffle为False,表示每次迭代时不会打乱数据集
val_dl = DataLoader(val_ds, batch_size=64, shuffle=False)  # 遍历训练数据集
for x, y in train_dl:# 打印x的形状print(x.shape)# 打印y的形状print(y.shape)# 跳出循环break

# 遍历val_dl中的每个元素,x和y分别表示输入和标签
for x, y in val_dl:# 打印输入的形状print(x.shape)# 打印标签的形状print(y.shape)# 退出循环break

# 从datasets库中导入FashionMNIST数据集,并将其设置为训练集
fashion_train=datasets.FashionMNIST(path2data, train=True, download=True)

搭建模型

使用torchvision为多分类任务构建一个模型。torchvision软件包提供了用于图像分类的多个最先进的深度学习模型的实现,包括 AlexNet、VGG、ResNet、SqueezeNet、DenseNet、Inception、GoogleNet、ShuffleNet。这些模型在 ImageNet 数据集上进行了训练,其中包含来自 1,000 个班级的 1400 多万张图像。可以分别使用具有随机初始化权重的架构、预训练权重进行尝试。

from torchvision import models
import torch# 创建一个resnet18模型,pretrained参数设置为False,表示不使用预训练的权重
model_resnet18 = models.resnet18(pretrained=False)
# 打印模型ResNet18
print(model_resnet18)

from torch import nn
# 定义类别数量
num_classes=10
# 获取模型ResNet18的全连接层输入特征数量
num_ftrs = model_resnet18.fc.in_features 
# 将全连接层替换为新的全连接层,输出特征数量为类别数量
model_resnet18.fc = nn.Linear(num_ftrs, num_classes)# 定义设备为GPU
device = torch.device("cuda:0")
# 将模型移动到GPU上
model_resnet18.to(device)

from torchsummary import summary# 打印模型结构,输入大小为(3, 224, 224),即3个通道,224x224大小的图像
summary(model_resnet18, input_size=(3, 224, 224))

# 遍历模型ResNet18的参数
for w in model_resnet18.parameters():# 将参数转换为CPU数据w=w.data.cpu()# 打印参数的形状print(w.shape)break# 计算参数的最小值
min_w=torch.min(w)
# 计算w1,其中w1 = (-1/(2*min_w))*w + 0.5 
w1 = (-1/(2*min_w))*w + 0.5 
# 打印w1的最小值和最大值
print(torch.min(w1).item(),torch.max(w1).item())# 计算网格大小
grid_size=len(w1)
# 生成网格
x_grid=[w1[i] for i in range(grid_size)]
x_grid=utils.make_grid(x_grid, nrow=8, padding=1)
print(x_grid.shape)# 创建一个5x5的图像
plt.figure(figsize=(5,5))
show(x_grid)

采用预训练权重

from torchvision import models
import torch# 加载预训练的resnet18模型
resnet18_pretrained = models.resnet18(pretrained=True)# 定义分类的类别数
num_classes=10
# 获取resnet18模型的最后一层全连接层的输入特征数
num_ftrs = resnet18_pretrained.fc.in_features
# 将最后一层全连接层替换为新的全连接层,新的全连接层的输出特征数为num_classes
resnet18_pretrained.fc = nn.Linear(num_ftrs, num_classes)# 定义设备为cuda:0
device = torch.device("cuda:0")
# 将模型移动到cuda:0设备上
resnet18_pretrained.to(device) 

# 遍历resnet18_pretrained的参数
for w in resnet18_pretrained.parameters():# 将参数转换为cpu格式w=w.data.cpu()print(w.shape)break# 计算w的最小值
min_w=torch.min(w)
# 计算w1,其中w1=(-1/(2*min_w))*w + 0.5
w1 = (-1/(2*min_w))*w + 0.5 
# 打印w1的最小值和最大值
print(torch.min(w1).item(),torch.max(w1).item())# 计算w1的网格大小
grid_size=len(w1)
# 将w1转换为网格形式
x_grid=[w1[i] for i in range(grid_size)]
x_grid=utils.make_grid(x_grid, nrow=8, padding=1)
print(x_grid.shape)# 创建一个5x5的图像
plt.figure(figsize=(5,5))
show(x_grid)

 

定义损失函数

定义损失函数的目的是将模型优化为预定义的指标。分类任务的标准损失函数是交叉熵损失或对数损失。在定义损失函数时,需要考虑模型输出的数量及其激活函数。对于多类分类任务,输出数设置为类数,输出激活函数确确定损失函数。

输出激活输出数量损失函数
None num_classes nn.CrossEntropyLoss
log_Softmax num_classes nn.NLLLoss
torch.manual_seed(0)# 定义输入数据的维度
n,c=4,5
# 生成随机输入数据,并设置requires_grad=True,表示需要计算梯度
y = torch.randn(n, c, requires_grad=True)
# 打印输入数据的形状
print(y.shape)# 定义交叉熵损失函数,reduction参数设置为"sum",表示将所有样本的损失相加
loss_func = nn.CrossEntropyLoss(reduction="sum")
# 生成随机目标数据,表示每个样本的类别
target = torch.randint(c,size=(n,))
# 打印目标数据的形状
print(target.shape)# 计算损失
loss = loss_func(y, target)
# 打印损失值
print(loss.item())

# 反向传播,计算梯度
loss.backward()
# 打印输出y的值
print (y.data)

定义优化器

torch.optim 包提供了通用优化器的实现。优化器将保持当前状态,并根据计算出的梯度更新参数。对于分类任务,随机梯度下降 (SGD) 和 Adam 优化器非常常用。Adam 优化器在速度和准确性方面通常优于 SGD,因此这里选择 Adam 优化器。

from torch import optim
# 定义优化器,使用Adam优化算法,优化model_resnet18的参数,学习率为1e-4
opt = optim.Adam(model_resnet18.parameters(), lr=1e-4)
# 定义一个函数,用于获取优化器的学习率
def get_lr(opt):# 遍历优化器的参数组for param_group in opt.param_groups:# 返回学习率return param_group['lr']# 调用函数,获取当前学习率
current_lr=get_lr(opt)
# 打印当前学习率
print('current lr={}'.format(current_lr))

 

from torch.optim.lr_scheduler import CosineAnnealingLR# 创建学习率调度器,T_max表示周期长度,eta_min表示最小学习率
lr_scheduler = CosineAnnealingLR(opt,T_max=2,eta_min=1e-5)
# 定义一个空列表lrs
lrs=[]
# 循环10次
for i in range(10):# 调用lr_scheduler.step()方法lr_scheduler.step()# 调用get_lr()方法获取当前学习率lr=get_lr(opt)# 打印当前epoch和对应的学习率print("epoch %s, lr: %.1e" %(i,lr))# 将当前学习率添加到列表lrs中lrs.append(lr)
# 绘制lrs列表中的数据
plt.plot(lrs)

 

 

训练和迁移学习

到目前为止,已经创建了数据集并定义了模型、损失函数和优化器,接下来将进行训练和验证。首先使用随机初始化的权重训练模型。然后使用预先训练的权重训练模型,这也称为迁移学习。迁移学习将从一个问题中学到的知识(权重)用于其他类似问题。训练和验证脚本可能很长且重复。为了提高代码可读性并避免代码重复,将先构建一些辅助函数。

# 定义一个函数metrics_batch,用于计算预测结果和目标之间的正确率
def metrics_batch(output, target):# 将输出结果的最大值所在的索引作为预测结果pred = output.argmax(dim=1, keepdim=True)# 计算预测结果和目标之间的正确率corrects=pred.eq(target.view_as(pred)).sum().item()# 返回正确率return corrects
def loss_batch(loss_func, output, target, opt=None):# 计算batch的损失loss = loss_func(output, target)# 计算batch的评估指标metric_b = metrics_batch(output,target)# 如果有优化器,则进行反向传播和参数更新if opt is not None:opt.zero_grad()loss.backward()opt.step()# 返回损失和评估指标return loss.item(), metric_bdevice = torch.device("cuda")# 定义一个函数loss_epoch,用于计算模型在数据集上的损失
def loss_epoch(model,loss_func,dataset_dl,sanity_check=False,opt=None):# 初始化运行损失和运行指标running_loss=0.0running_metric=0.0# 获取数据集的长度len_data=len(dataset_dl.dataset)# 遍历数据集for xb, yb in dataset_dl:# 将数据移动到GPU上xb=xb.to(device)yb=yb.to(device)# 获取模型输出output=model(xb)# 计算当前批次的损失和指标loss_b,metric_b=loss_batch(loss_func, output, yb, opt)# 累加损失和指标running_loss+=loss_bif metric_b is not None:running_metric+=metric_b# 如果是sanity_check模式,则只计算一个批次if sanity_check is True:break# 计算平均损失和指标loss=running_loss/float(len_data)metric=running_metric/float(len_data)# 返回平均损失和指标return loss, metricdef train_val(model, params):# 获取参数num_epochs=params["num_epochs"]loss_func=params["loss_func"]opt=params["optimizer"]train_dl=params["train_dl"]val_dl=params["val_dl"]sanity_check=params["sanity_check"]lr_scheduler=params["lr_scheduler"]path2weights=params["path2weights"]# 初始化损失和指标历史记录loss_history={"train": [],"val": [],}metric_history={"train": [],"val": [],}# 复制模型参数best_model_wts = copy.deepcopy(model.state_dict())# 初始化最佳损失best_loss=float('inf')# 遍历每个epochfor epoch in range(num_epochs):# 获取当前学习率current_lr=get_lr(opt)print('Epoch {}/{}, current lr={}'.format(epoch, num_epochs - 1, current_lr))# 训练模型model.train()train_loss, train_metric=loss_epoch(model,loss_func,train_dl,sanity_check,opt)# 记录训练损失和指标loss_history["train"].append(train_loss)metric_history["train"].append(train_metric)# 评估模型model.eval()with torch.no_grad():val_loss, val_metric=loss_epoch(model,loss_func,val_dl,sanity_check)# 如果验证损失小于最佳损失,则更新最佳损失和最佳模型参数if val_loss < best_loss:best_loss = val_lossbest_model_wts = copy.deepcopy(model.state_dict())# 将最佳模型参数保存到本地文件torch.save(model.state_dict(), path2weights)print("Copied best model weights!")# 记录验证损失和指标loss_history["val"].append(val_loss)metric_history["val"].append(val_metric)# 更新学习率lr_scheduler.step()# 打印训练损失、验证损失和准确率print("train loss: %.6f, dev loss: %.6f, accuracy: %.2f" %(train_loss,val_loss,100*val_metric))print("-"*10) # 加载最佳模型参数model.load_state_dict(best_model_wts)# 返回模型、损失历史和指标历史return model, loss_history, metric_history

用随机权重进行训练

import copy# 定义交叉熵损失函数,reduction参数设置为"sum",表示将所有样本的损失相加
loss_func = nn.CrossEntropyLoss(reduction="sum")
# 定义Adam优化器,优化模型参数,学习率为1e-4
opt = optim.Adam(model_resnet18.parameters(), lr=1e-4)
# 定义余弦退火学习率调度器,T_max参数设置为5,eta_min参数设置为1e-6
lr_scheduler = CosineAnnealingLR(opt,T_max=5,eta_min=1e-6)# 定义训练参数字典
params_train={"num_epochs": 3,  # 训练轮数"optimizer": opt,  # 优化器"loss_func": loss_func,  # 损失函数"train_dl": train_dl,  # 训练数据集"val_dl": val_dl,  # 验证数据集"sanity_check": False,  # 是否进行sanity check"lr_scheduler": lr_scheduler,  # 学习率调度器"path2weights": "./models/resnet18.pt",  # 模型权重保存路径
}# 训练和验证模型
model_resnet18,loss_hist,metric_hist=train_val(model_resnet18,params_train)

# 获取训练参数中的训练轮数
num_epochs=params_train["num_epochs"]# 绘制训练和验证损失曲线
plt.title("Train-Val Loss")
plt.plot(range(1,num_epochs+1),loss_hist["train"],label="train")
plt.plot(range(1,num_epochs+1),loss_hist["val"],label="val")
plt.ylabel("Loss")
plt.xlabel("Training Epochs")
plt.legend()
plt.show()# 绘制训练和验证准确率曲线
plt.title("Train-Val Accuracy")
plt.plot(range(1,num_epochs+1),metric_hist["train"],label="train")
plt.plot(range(1,num_epochs+1),metric_hist["val"],label="val")
plt.ylabel("Accuracy")
plt.xlabel("Training Epochs")
plt.legend()
plt.show()

用预训练权重进行训练

import copy# 定义损失函数,使用交叉熵损失,并设置reduction为sum
loss_func = nn.CrossEntropyLoss(reduction="sum")
# 定义优化器,使用Adam优化器,并设置学习率为1e-4
opt = optim.Adam(resnet18_pretrained.parameters(), lr=1e-4)
# 定义学习率调度器,使用余弦退火调度器,设置最大周期为5,最小学习率为1e-6
lr_scheduler = CosineAnnealingLR(opt,T_max=5,eta_min=1e-6)# 定义训练参数
params_train={"num_epochs": 3,  # 设置训练周期为3"optimizer": opt,  # 设置优化器"loss_func": loss_func,  # 设置损失函数"train_dl": train_dl,  # 设置训练数据集"val_dl": val_dl,  # 设置验证数据集"sanity_check": False,  # 设置是否进行sanity check"lr_scheduler": lr_scheduler,  # 设置学习率调度器"path2weights": "./models/resnet18_pretrained.pt",  # 设置权重保存路径
}# 调用train_val函数进行训练和验证,并返回训练后的模型、损失历史和指标历史
resnet18_pretrained,loss_hist,metric_hist=train_val(resnet18_pretrained,params_train)

# 获取训练参数中的训练轮数
num_epochs=params_train["num_epochs"]# 绘制训练和验证损失曲线
plt.title("Train-Val Loss")
plt.plot(range(1,num_epochs+1),loss_hist["train"],label="train")
plt.plot(range(1,num_epochs+1),loss_hist["val"],label="val")
plt.ylabel("Loss")
plt.xlabel("Training Epochs")
plt.legend()
plt.show()# 绘制训练和验证准确率曲线
plt.title("Train-Val Accuracy")
plt.plot(range(1,num_epochs+1),metric_hist["train"],label="train")
plt.plot(range(1,num_epochs+1),metric_hist["val"],label="val")
plt.ylabel("Accuracy")
plt.xlabel("Training Epochs")
plt.legend()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/49897.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

one-api 源码调试配置

本文主要介绍通过 VSCode 调试 one-api 源码。 一、环境配置 1.1 VSCode 和 one-api 安装 首先,确保已经安装了 VSCode(下载链接)和 one-api 源码(下载链接)已下载并安装了依赖 1.2 安装 Go 插件 在 VSCode 中,安装 Go 插件。 1.3 安装 dlv 调试包 可以通过下载源码…

【黑马java基础】多线程

什么是线程&#xff1f; 线程(Thread)是一个程序内部的一条执行流程。 这个是一条执行流程&#xff0c;虽然有循环&#xff0c;但是最后只有一条流程往前推进&#xff0c;所以视为一条。 程序中如果只有一条执行流程&#xff0c;那这个程序就是单线程的程序。 程序是指令序列…

Ubuntu20.04安装Elasticsearch

简介 ELK&#xff08;Elasticsearch, Logstash, Kibana&#xff09;是一套开源的日志管理和分析工具&#xff0c;用于收集、存储、分析和可视化日志数据。以下是如何在Ubuntu服务器上安装和配置ELK堆栈以便发送和分析日志信息的步骤。 安装Elasticsearch 首先&#xff0c;安…

【系统架构设计师】十八、架构设计实践(信息系统架构设计理论与实践2)

目录 四、企业信息系统的总体框架 4.1 战略系统 4.2 业务系统 4.3 应用系统 4.4 企业信息基础设施 4.5 业务流程重组BPR 4.6 业务流程管理BPM 五、信息系统架构设计方法 5.1 行业标准的体系架构框架 5.2 架构开发方法 5.3 信息化总体架构方法 5.4 信息化建设生命周…

防火墙——网络环境支持

目录 网络环境支持 防火墙的组网 web连接上防火墙 web管理口 让防火墙接到网络环境中 ​编辑 管理员用户管理 缺省管理员 接口 配置一个普通接口 创建安全区域 路由模式 透明模式 混合模式 防火墙的安全策略 防火墙转发流程 与传统包过滤的区别 创建安全策略 …

DDoS攻击:威胁与防护策略

DDoS&#xff08;分布式拒绝服务&#xff09;攻击是网络安全领域的一大挑战&#xff0c;对企业造成严重的影响。本文将深入探讨DDoS攻击的原理和防护方法。 DDoS攻击的原理 DDoS攻击通过大量请求&#xff0c;使目标系统无法响应正常请求。攻击者利用多台计算机发送大量请求&am…

气膜羽毛球馆的维护和运营成本解析—轻空间

随着人们对健康生活方式的追求不断增加&#xff0c;羽毛球这项运动也愈发受到欢迎。然而&#xff0c;传统的羽毛球馆往往存在建设周期长、成本高、维护复杂等问题。气膜羽毛球馆作为一种新型的运动场馆解决方案&#xff0c;因其快速搭建、环保节能、舒适环境等优势而逐渐被广泛…

跨平台桌面应用程序框架Electron

用于构建跨平台桌面应用程序的框架。Electron 由 GitHub 开发&#xff0c;它允许开发者使用 Web 技术&#xff08;如 HTML、CSS 和 JavaScript&#xff09;来创建桌面软件。Electron 基于 Node.js 和 Chromium&#xff0c;因此可以提供丰富的功能和性能。 Electron 的主要优点…

LabVIEW和IQ测试仪进行WiFi测试

介绍一个使用LabVIEW和LitePoint IQxel-MW IQ测试仪进行WiFi测试的系统。包括具体的硬件型号、如何实现通讯、开发中需要注意的事项以及实现的功能。 使用的硬件​ IQ测试仪型号: LitePoint IQxel-MW 电脑: 配置高效的台式机或笔记本电脑 路由器: 支持802.11ax (Wi-Fi 6) 的…

C语言 | Leetcode C语言题解之第282题给表达式添加运算符

题目&#xff1a; 题解&#xff1a; #define MAX_COUNT 10000 // 解的个数足够大 #define NUM_COUNT 100 // 操作数的个数足够大 long long num[NUM_COUNT] {0};long long calc(char *a) { // 计算表达式a的值// 将数字和符号&#xff0c;入栈memset(num, 0, sizeof(num));in…

2024大家都想掌握的4种PDF翻译技巧

借着互联网的东风现在全球化的交流越发频繁&#xff0c;很多时候都会遇到跨语言交流的问题。外语不好的小伙伴阅读外国文献的时候应该都很头疼吧&#xff0c;这时候pdf翻译成中文的工具就可以解决这个问题啦。 1.福昕翻译 直通车&#xff1a;https://fanyi.pdf365.cn/ 这个…

PSINS工具箱函数介绍——insplot

insplot是一个绘图命令,用于将avp数据绘制出来 本文所述的代码需要基于PSINS工具箱,工具箱的讲解: PSINS初学指导基于PSINS的相关程序设计(付费专题)使用方法 此函数使用起来也很简单,直接后面加avp即可,如: insplot(avp);其中,avp为: 每行表示一个时间1~3列为姿态…

量化交易策略解读

光大证券-20190606-重构情绪体系&#xff0c;探知市场温度——市场情绪体系系列报告之二.pdf 市场情绪与股市择时体系研究 市场情绪的重要性 市场情绪反映了投资者心理状态的集体体现&#xff0c;对市场走势有同步或滞后的影响&#xff0c;并在某些情况下预示市场转折点。 择…

一键解锁:科研服务器性能匹配秘籍,选择性能精准匹配科研任务和计算需求的服务器

一键解锁&#xff1a;科研服务器性能匹配秘籍 HPC科研工作站服务器集群细分领域迷途小书童 专注于HPC科研服务器细分领域kyfwq001 &#x1f3af;在当今科技飞速发展的时代&#xff0c;科研工作对计算资源的需求日益增长&#x1f61c;。选择性能精准匹配科研任务和计算需求的服…

集合的面试题和五种集合的详细讲解

20240724 一、面试题节选二、来自于b站人人都是程序员的视频截图 &#xff08;感谢人人都是程序员大佬的视频&#xff0c;针对于个人复习。&#xff09; 一、面试题节选 二、来自于b站人人都是程序员的视频截图 hashmap&#xff1a; 唯一的缺点&#xff0c;无序&#xf…

maven项目容器化运行之3-优雅的利用Jenkins和maven使用docker插件调用远程docker构建服务并在1Panel中运行

一.背景 在《maven项目容器化运行之1》中&#xff0c;我们开启了1Panel环境中docker构建服务给到了局域网。在《maven项目容器化运行之2》中&#xff0c;我们基本实现了maven工程创建、远程调用docker构建镜像、在1Panel选择镜像运行容器三大步骤。 但是&#xff0c;存在一个问…

昇思25天学习打卡营第23天 | CycleGAN图像风格迁移互换

昇思25天学习打卡营第23天 | CycleGAN图像风格迁移互换 文章目录 昇思25天学习打卡营第23天 | CycleGAN图像风格迁移互换CycleGAN模型模型结构循环一致损失函数 数据集数据下载创建数据集 网络构建生成器判别器损失函数和优化器前向计算梯度计算与反向传播 总结打卡 CycleGAN模…

【办公软件】Office 2019以上版本PPT 做平滑切换

Office2019以上版本可以在切页面时做平滑切换&#xff0c;做到一些简单的动画效果。如下在快捷菜单栏中的切换里选择平滑。 比如&#xff0c;在两页PPT中&#xff0c;使用同一个形状对象&#xff0c;修改了大小和颜色。 选择切换为平滑后&#xff0c;可以完成如下的动画显示。 …

java-poi实现excel自定义注解生成数据并导出

因为项目很多地方需要使用导出数据excel的功能&#xff0c;所以开发了一个简易的统一生成导出方法。 依赖 <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooxml</artifactId> <version>4.0.1</version…

【TortoiseGit】合并单个commit(提交)到指定分支上

0、前言 当我们用Git的时候经常用到多个分支&#xff0c;会经常有如下情况&#xff1a;一个dev分支下面会有多个test分支&#xff0c;而每个test分支由不同的开发者。而我们会有这样的需求&#xff1a; 当某个test分支完成了相应功能验证&#xff0c;就要把成功验证的功能代码…