OpenAI从GPT-4V到GPT-4O,再到GPT-4OMini简介

GPT-4omini

OpenAI从GPT-4V到GPT-4O,再到GPT-4OMini简介

一、引言

在人工智能领域,OpenAI的GPT系列模型一直是自然语言处理的标杆。随着技术的不断进步,OpenAI推出了多个版本的GPT模型,包括视觉增强的GPT-4V(GPT-4 with Vision)、优化版的GPT-4O(GPT-4 Optimized)以及适用于资源受限环境的轻量级版本GPT-4OMini(GPT-4 Optimized Mini)。本文将详细介绍这些模型,并深入探讨GPT-4OMini背后的技术栈。通过公式和代码示例,我们将全面了解这些模型的构建原理和实现细节。

二、GPT-4V:视觉增强的GPT-4

1. 概述

GPT-4V是GPT-4的视觉增强版本,它能够处理和生成图像信息,进一步扩展了GPT模型的应用范围。GPT-4V在语言理解的基础上加入了视觉处理能力,使其在多模态任务中表现出色。

2. 技术细节

GPT-4V结合了Transformer模型和卷积神经网络(CNN),能够同时处理文本和图像数据。模型的架构如下图所示:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass VisionEncoder(nn.Module):def __init__(self):super(VisionEncoder, self).__init__()self.conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2)def forward(self, x):x = self.pool(F.relu(self.conv(x)))return xclass GPT4V(nn.Module):def __init__(self):super(GPT4V, self).__init__()self.vision_encoder = VisionEncoder()self.transformer = nn.Transformer(d_model=512, nhead=8, num_encoder_layers=6)def forward(self, image, text):vision_features = self.vision_encoder(image)text_features = self.transformer(text)combined_features = torch.cat((vision_features, text_features), dim=1)return combined_features
视觉处理模块

视觉处理模块使用卷积神经网络(CNN)来提取图像特征。这些特征通过一系列卷积层和池化层进行处理,最终形成图像的高层次表示。

Transformer

Transformer模块用于处理文本输入,并结合来自视觉模块的图像特征。文本和图像特征通过拼接或加权平均的方式进行融合。

3. 应用场景

GPT-4V在视觉问答、图像生成、图文配对等任务中表现出色。例如,在图像描述生成任务中,GPT-4V能够根据输入图像生成相应的描述文字。

三、GPT-4O:优化版GPT-4

1. 概述

GPT-4O是GPT-4的优化版本,旨在提高模型的计算效率和推理速度。GPT-4O在保持原有模型性能的前提下,通过优化算法和架构设计实现了更高的效率。

2. 技术细节

a. 权重共享(Weight Sharing)

权重共享是一种减少模型参数数量的方法,通过在模型的不同层之间共享参数来降低计算和存储成本。

import torch
import torch.nn as nnclass OptimizedTransformer(nn.Module):def __init__(self, d_model, nhead, num_layers):super(OptimizedTransformer, self).__init__()self.transformer = nn.Transformer(d_model, nhead, num_layers)# 使用权重共享优化self.shared_weights = nn.Parameter(torch.randn(d_model, d_model))def forward(self, src, tgt):src = src @ self.shared_weightstgt = tgt @ self.shared_weightsreturn self.transformer(src, tgt)
b. 参数剪枝(Parameter Pruning)

参数剪枝通过移除神经网络中对最终输出影响较小的权重,从而减少模型的参数数量。剪枝可以是非结构化剪枝(去除单个权重)或结构化剪枝(去除整个神经元或通道)。

import torch
import torch.nn.utils.prune as prune# 假设我们有一个简单的线性层
linear = torch.nn.Linear(10, 5)# 应用全局剪枝,保留50%的权重
prune.global_unstructured([(linear, 'weight')],pruning_method=prune.L1Unstructured,amount=0.5,
)# 检查剪枝后的权重
print(linear.weight)
c. 注意力机制优化(Attention Mechanism Optimization)

通过引入更高效的注意力计算方法,如线性注意力(Linear Attention),可以显著减少计算复杂度。

import torch
import torch.nn as nnclass LinearAttention(nn.Module):def __init__(self, d_model):super(LinearAttention, self).__init__()self.query = nn.Linear(d_model, d_model)self.key = nn.Linear(d_model, d_model)self.value = nn.Linear(d_model, d_model)def forward(self, x):Q = self.query(x)K = self.key(x)V = self.value(x)attention_weights = torch.bmm(Q, K.transpose(1, 2)) / x.size(-1)**0.5attention = torch.bmm(attention_weights, V)return attention

3. 应用场景

GPT-4O适用于需要高效推理和低延迟的场景,例如实时翻译、智能助手和大规模文本处理任务。

四、GPT-4OMini:轻量级GPT-4

1. 概述

GPT-4OMini是GPT-4O的轻量级版本,专为资源受限环境设计。它在保持高效性能的同时,大幅度减少了模型的参数数量和计算复杂度,使其适用于移动设备、嵌入式系统等场景。

2. 技术细节

a. 模型压缩技术

GPT-4OMini背后的一个关键技术是模型压缩。模型压缩技术包括以下几种方法:

参数剪枝(Parameter Pruning)同上

参数剪枝通过移除神经网络中对最终输出影响较小的权重,从而减少模型的参数数量。常见的剪枝方法有基于阈值的剪枝和结构化剪枝。

import torch
import torch.nn.utils.prune as prune# 假设我们有一个简单的线性层
linear = torch.nn.Linear(10, 5)# 应用全局剪枝,保留50%的权重
prune.global_unstructured([(linear, 'weight')],pruning_method=prune.L1Unstructured,amount=0.5,
)# 检查剪枝后的权重
print(linear.weight)
知识蒸馏(Knowledge Distillation)

知识蒸馏通过训练一个较小的学生模型去学习较大教师模型的行为,从而使小模型能够在保留大模型性能的前提下大幅度减小规模。

import torch.nn.functional as F# 定义教师模型和学生模型
teacher_model = GPT4Model()
student_model = GPT4MiniModel()# 假设我们有输入数据x和标签y
x, y = get_data()# 教师模型输出
with torch.no_grad():teacher_output = teacher_model(x)# 学生模型输出
student_output = student_model(x)# 蒸馏损失
loss = F.kl_div(F.log_softmax(student_output / temperature, dim=1),F.softmax(teacher_output / temperature, dim=1),reduction='batchmean'
)# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
量化(Quantization)

量化通过将模型的权重和激活从高精度表示(如32位浮点数)转换为低精度表示(如8位整数),从而减少模型的存储和计算需求。

import torch.quantization# 定义模型
model = GPT4Model()# 准备模型进行量化
model.qconfig = torch.quantization.default_qconfig
torch.quantization.prepare(model, inplace=True)# 校准模型
calibrate_model(model, calibration_data)# 转换模型为量化版本
torch.quantization.convert(model, inplace=True)# 检查量化后的模型
print(model)
b. 高效的模型架构设计

GPT-4OMini采用了更高效的模型架构设计,以在不显著牺牲性能的前提下减少计算量。例如,它可能会使用更少的Transformer层、更小的隐藏层尺寸和更少的注意力头。

import torch
import torch.nn as nnclass MiniTransformer(nn.Module):def __init__(self, d_model, nhead, num_layers):super(MiniTransformer, self).__init__()self.transformer = nn.Transformer(d_model, nhead, num_layers)def forward(self, src, tgt):return self.transformer(src, tgt)# 初始化一个较小的Transformer模型
model = MiniTransformer(d_model=128, nhead=4, num_layers=2)
c. 硬件加速与并行计算

GPT-4OMini还通过硬件加速和并行计算进一步提高效率。利用现代GPU、TPU等硬件加速器,以及分布式计算技术,可以显著加速模型训练和推理过程。

import torch
import torch.nn as nn
import torch.distributed as dist# 初始化分布式环境
dist.init_process_group("gloo", rank=rank, world_size=world_size)# 定义模型
model = GPT4Model().to(device)# 包装为分布式数据并行模型
model = nn.parallel.DistributedDataParallel(model)# 定义数据加载器和优化器
data_loader = get_data_loader()
optimizer = torch.optim.Adam(model.parameters())# 训练循环
for epoch in range(num_epochs):for batch in data_loader:optimizer.zero_grad()outputs = model(batch)loss = compute_loss(outputs, batch.labels)loss.backward()optimizer.step()

3. 应用场景

GPT-4OMini适用于需要轻量级、高效的自然语言处理任务的场景,如移动应用、智能家居设备和边缘计算。

五、结论

从GPT-4V到GPT-4O,再到GPT-4OMini,这些模型代表了OpenAI在自然语言处理和多模态处理方面的最新进展。通过结合先进的技术和优化方法,这些模型在不同应用场景中展示了强大的能力。GPT-4OMini特别适合资源受限的环境,具有广泛的应用前景。希望本文的详细介绍能够帮助读者更好地理解这些模型的构建原理和实现方法。

随着技术的不断发展,我们可以期待更多创新的轻量级模型出现在各类实际应用中,推动人工智能技术的普及和应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/49431.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PeRF: Preemption-enabled RDMA Framework——论文泛读

ATC 2024 Paper 论文阅读笔记整理 问题 远程直接内存访问(RDMA)为数据密集型应用程序提供了高吞吐量、低延迟和最小的CPU使用率。各种数据密集型应用程序,如大数据分析[4,5]、机器学习[2,11,15,33]、分布式存储[21,27,28,41]和键值存储[20,…

Maven Release Plugin 的具体用法

Maven Release Plugin(Maven 发布插件)是一个用于帮助在Maven项目中执行版本发布流程的插件。它的主要功能是简化项目版本的发布和管理,确保版本号的正确性,并自动处理与版本发布相关的任务。以下是Maven Release Plugin的具体用法…

[用AI日进斗金系列]用码上飞在企微接单开发一个项目管理系统!

今天是【日进斗金】系列的第二期文章。 先给不了解这个系列的朋友们介绍一下,在这个系列的文章中,我们将会在企微的工作台的“需求发布页面”中寻找有软件开发需求的用户 并通过自研的L4级自动化智能软件开发平台「码上飞CodeFlying」让AI生成应用以解…

基于面向对象重构模型训练器

引言 深度学习领域我们常用jupyter来演练代码,但实际生产环境中不可能像jupyter一样,所有代码逻辑都在面向过程编程,这会导致代码可复用性差,维护难度高。 前面这篇文章 基于pytorch可视化重学线性回归模型 已经封装了数据加载器…

代理模式详解

1.代理模式的作用 能通过代理对象间接实现对目标对象的访问,在不改变源代码的情况下对目标对象的方法进行增强。 什么是通过代理对象间接实现对目标对象的访问? 举个生活中的例子:例如你买车是通过4s店(代理对象),而不是直接去车工厂(目标对象)&#…

leetcode 116. 填充每个节点的下一个右侧节点指针

leetcode 116. 填充每个节点的下一个右侧节点指针 题目 给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下: struct Node { int val; Node *left; Node *right; Node *next; } 填充它的每个 next …

QT 关于QTableWidget的常规使用

目录 一、初始化 二、封装功能用法 三、结语 一、初始化 1、设置表头 直接在ui设计界面修改或者使用QT封装的函数修改,代码如下: QStringList recList {"第一列", "第二列", "第三列"}; ui->tableWidget->setH…

STM32 智能家居自动化控制系统教程

目录 引言环境准备智能家居自动化控制系统基础代码实现:实现智能家居自动化控制系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景:家居控制与优化问题解决方案与优化收尾与总结 1. 引言 智能家…

【第一天】计算机网络 TCP/IP模型和OSI模型,从输入URL到页面显示发生了什么

TCP/IP模型和OSI模型 这两个模型属于计算机网络的体系结构。 OSI模型是七层模型,从上到下包括: 应用层,表示层,会话层,传输层,网络层,数据链路层,物理层 TCP/IP模型是四层模型&…

谷粒商城实战笔记-52~53-商品服务-API-三级分类-新增-修改

文章目录 一,52-商品服务-API-三级分类-新增-新增效果完成1,点击Append按钮,显示弹窗2,测试完整代码 二,53-商品服务-API-三级分类-修改-修改效果完成1,添加Edit按钮并绑定事件2,修改弹窗确定按…

C++学习笔记01-语法基础(问题-解答自查版)

前言 以下问题以Q&A形式记录,基本上都是笔者在初学一轮后,掌握不牢或者频繁忘记的点 Q&A的形式有助于学习过程中时刻关注自己的输入与输出关系,也适合做查漏补缺和复盘。 本文对读者可以用作自查,答案在后面&#xff0…

解决llama_index中使用Ollama出现timed out 问题

现象: File "~/anaconda3/envs/leo_py38/lib/python3.8/site-packages/httpx/_transports/default.py", line 86, in map_httpcore_exceptionsraise mapped_exc(message) from exc httpx.ReadTimeout: timed out代码: from llama_index.core …

反转链表 - 力扣(LeetCode)

206. 反转链表 - 力扣(LeetCode) /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* reverseList(struct ListNode* head) {if(head NULL)return NULL;else{struct Lis…

【iOS】——属性关键字的底层原理

strong,retain,copy,atomic,nonatomic c源码 interface propertyTest : NSObject property (nonatomic, strong) NSString *nsstring___StrongTest; property (nonatomic, retain) NSString *nsstring___RetainTest; property (n…

STM32--HAL库--定时器篇

一:如何配置定时器 打开对应工程串口配置好的工程(上一篇博客)做如下配置: 定时器的中断溢出时间计算公式是: 由图得T100*1000/100MHz 注:100MHz100000000 所以溢出时间等于1ms 关于上图4的自动重装…

ARM功耗管理之Suspend-to-RAM实验

安全之安全(security)博客目录导读 ARM功耗管理精讲与实战汇总参见:Arm功耗管理精讲与实战 思考:睡眠唤醒实验?压力测试?Suspend-to-Idle/RAM/Disk演示? 1、实验环境准备 2、软件代码准备 3、唤醒源 4、Suspen…

计算机技术基础 (bat 批处理)Note4

计算机技术基础 (bat 批处理)Note4 本节主要讲解一些 bat 批处理文件中的一些特殊符号,包括 , %, > 和 >>, |, ^, & 和 && 和 ||, " ", ,, ;, ()。 回显屏蔽符 回显屏蔽符 : 这个字符在批处理中的意思是关…

把redis用在Java项目

1. Java连接redis Java连接redis的方式是通过jedis&#xff0c;连接redis需要遵循jedis协议。 1.1 引入依赖 <!--引入java连接redis的驱动--><dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version&…

linux 部署flask项目

linux python环境安装: https://blog.csdn.net/weixin_41934979/article/details/140528410 1.创建虚拟环境 python3.12 -m venv .venv 2.激活环境 . .venv/bin/activate 3.安装依赖包(pip3.12 install -r requirements.txt) pip3.12 install -r requirements.txt 4.测试启…

SpringBoot 后端接收参数优化(统一处理前端参数)

在使用 SpringBoot MyBatisPlus 框架的项目&#xff0c;写了个后端统一处理前端post提交的json格式的查询参数类&#xff0c;赖得手工一个一个参数处理&#xff08;把要查询的参数交给前端&#xff09;。 使用示例代码&#xff1a; PostMapping("/list")public Strin…