STM32 智能家居自动化控制系统教程

目录

  1. 引言
  2. 环境准备
  3. 智能家居自动化控制系统基础
  4. 代码实现:实现智能家居自动化控制系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化
  5. 应用场景:家居控制与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

智能家居自动化控制系统通过STM32嵌入式系统结合各种传感器、执行器和通信模块,实现对家居设备的实时监控、自动控制和数据传输。本文将详细介绍如何在STM32系统中实现一个智能家居自动化控制系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  1. 开发板:STM32F4系列或STM32H7系列开发板
  2. 调试器:ST-LINK V2或板载调试器
  3. 传感器:如温湿度传感器、光照传感器、运动传感器等
  4. 执行器:如继电器模块、智能插座等
  5. 通信模块:如Wi-Fi模块、蓝牙模块
  6. 显示屏:如OLED显示屏
  7. 按键或旋钮:用于用户输入和设置
  8. 电源:电源适配器

软件准备

  1. 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  2. 调试工具:STM32 ST-LINK Utility或GDB
  3. 库和中间件:STM32 HAL库和FreeRTOS

安装步骤

  1. 下载并安装STM32CubeMX
  2. 下载并安装STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序

3. 智能家居自动化控制系统基础

控制系统架构

智能家居自动化控制系统由以下部分组成:

  1. 数据采集模块:用于采集家庭环境的温湿度、光照强度、运动等数据
  2. 数据处理与控制模块:对采集的数据进行处理和分析,生成控制信号
  3. 通信与网络系统:实现家居数据与服务器或其他设备的通信
  4. 显示系统:用于显示家庭环境数据和系统状态
  5. 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过各种传感器采集家庭环境数据,并实时显示在OLED显示屏上。系统通过数据处理和通信模块,实现对家居设备的实时监控和自动控制。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。

4. 代码实现:实现智能家居自动化控制系统

4.1 数据采集模块

配置温湿度传感器

使用STM32CubeMX配置I2C接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "dht22.h"I2C_HandleTypeDef hi2c1;void I2C1_Init(void) {hi2c1.Instance = I2C1;hi2c1.Init.ClockSpeed = 100000;hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;hi2c1.Init.OwnAddress1 = 0;hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;hi2c1.Init.OwnAddress2 = 0;hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;HAL_I2C_Init(&hi2c1);
}void Read_Temperature_Humidity(float* temperature, float* humidity) {DHT22_ReadAll(temperature, humidity);
}int main(void) {HAL_Init();SystemClock_Config();I2C1_Init();DHT22_Init();float temperature, humidity;while (1) {Read_Temperature_Humidity(&temperature, &humidity);HAL_Delay(1000);}
}
配置光照传感器

使用STM32CubeMX配置ADC接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"ADC_HandleTypeDef hadc1;void ADC_Init(void) {__HAL_RCC_ADC1_CLK_ENABLE();ADC_ChannelConfTypeDef sConfig = {0};hadc1.Instance = ADC1;hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;hadc1.Init.Resolution = ADC_RESOLUTION_12B;hadc1.Init.ScanConvMode = DISABLE;hadc1.Init.ContinuousConvMode = ENABLE;hadc1.Init.DiscontinuousConvMode = DISABLE;hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc1.Init.NbrOfConversion = 1;hadc1.Init.DMAContinuousRequests = DISABLE;hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;HAL_ADC_Init(&hadc1);sConfig.Channel = ADC_CHANNEL_0;sConfig.Rank = 1;sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}uint32_t Read_Light_Intensity(void) {HAL_ADC_Start(&hadc1);HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);return HAL_ADC_GetValue(&hadc1);
}int main(void) {HAL_Init();SystemClock_Config();ADC_Init();uint32_t light_intensity;while (1) {light_intensity = Read_Light_Intensity();HAL_Delay(1000);}
}
配置运动传感器

使用STM32CubeMX配置GPIO接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"void GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = GPIO_PIN_0;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}uint8_t Read_Motion(void) {return HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();uint8_t motion_status;while (1) {motion_status = Read_Motion();HAL_Delay(1000);}
}

4.2 数据处理与控制模块

数据处理模块将传感器数据转换为可用于控制系统的数据,并进行必要的计算和分析。

家居自动化控制算法

实现一个简单的控制算法,根据传感器数据生成控制信号:

void Process_Home_Automation(float temperature, float humidity, uint32_t light_intensity, uint8_t motion_status) {if (temperature > 25.0) {// 打开空调HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET);} else {// 关闭空调HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);}if (light_intensity < 200) {// 打开灯光HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET);} else {// 关闭灯光HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET);}if (motion_status) {// 开启安防报警HAL_GPIO_WritePin(GPIOB
, GPIO_PIN_2, GPIO_PIN_SET);
} else {
// 关闭安防报警
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET);
}
}void GPIOB_Init(void) {
__HAL_RCC_GPIOB_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HALHAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}int main(void) {HAL_Init();SystemClock_Config();GPIOB_Init();I2C1_Init();ADC_Init();GPIO_Init();DHT22_Init();float temperature, humidity;uint32_t light_intensity;uint8_t motion_status;while (1) {Read_Temperature_Humidity(&temperature, &humidity);light_intensity = Read_Light_Intensity();motion_status = Read_Motion();Process_Home_Automation(temperature, humidity, light_intensity, motion_status);HAL_Delay(1000);}
}

4.3 通信与网络系统实现

配置Wi-Fi模块

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "usart.h"
#include "wifi_module.h"UART_HandleTypeDef huart2;void UART2_Init(void) {huart2.Instance = USART2;huart2.Init.BaudRate = 115200;huart2.Init.WordLength = UART_WORDLENGTH_8B;huart2.Init.StopBits = UART_STOPBITS_1;huart2.Init.Parity = UART_PARITY_NONE;huart2.Init.Mode = UART_MODE_TX_RX;huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart2.Init.OverSampling = UART_OVERSAMPLING_16;HAL_UART_Init(&huart2);
}void Send_Home_Data_To_Server(float temperature, float humidity, uint32_t light_intensity, uint8_t motion_status) {char buffer[128];sprintf(buffer, "Temp: %.2f, Humidity: %.2f, Light: %lu, Motion: %u",temperature, humidity, light_intensity, motion_status);HAL_UART_Transmit(&huart2, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
}int main(void) {HAL_Init();SystemClock_Config();UART2_Init();GPIOB_Init();I2C1_Init();ADC_Init();GPIO_Init();DHT22_Init();float temperature, humidity;uint32_t light_intensity;uint8_t motion_status;while (1) {Read_Temperature_Humidity(&temperature, &humidity);light_intensity = Read_Light_Intensity();motion_status = Read_Motion();Process_Home_Automation(temperature, humidity, light_intensity, motion_status);Send_Home_Data_To_Server(temperature, humidity, light_intensity, motion_status);HAL_Delay(1000);}
}

4.4 用户界面与数据可视化

配置OLED显示屏

使用STM32CubeMX配置I2C接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"void Display_Init(void) {OLED_Init();
}

然后实现数据展示函数,将家居环境数据展示在OLED屏幕上:

void Display_Home_Data(float temperature, float humidity, uint32_t light_intensity, uint8_t motion_status) {char buffer[32];sprintf(buffer, "Temp: %.2f C", temperature);OLED_ShowString(0, 0, buffer);sprintf(buffer, "Humidity: %.2f %%", humidity);OLED_ShowString(0, 1, buffer);sprintf(buffer, "Light: %lu", light_intensity);OLED_ShowString(0, 2, buffer);sprintf(buffer, "Motion: %s", motion_status ? "Yes" : "No");OLED_ShowString(0, 3, buffer);
}int main(void) {HAL_Init();SystemClock_Config();I2C1_Init();Display_Init();GPIOB_Init();I2C1_Init();ADC_Init();GPIO_Init();DHT22_Init();float temperature, humidity;uint32_t light_intensity;uint8_t motion_status;while (1) {Read_Temperature_Humidity(&temperature, &humidity);light_intensity = Read_Light_Intensity();motion_status = Read_Motion();// 显示家居环境数据Display_Home_Data(temperature, humidity, light_intensity, motion_status);HAL_Delay(1000);}
}

5. 应用场景:家居控制与优化

智能照明控制

智能家居自动化控制系统可以用于照明控制,通过实时监测光照强度和运动状态,自动调节灯光亮度,提高家居舒适度和节能效果。

智能温控系统

智能家居自动化控制系统可以用于温控系统,通过监测温湿度,自动控制空调和加湿器,实现舒适的室内环境。

智能安防系统

智能家居自动化控制系统可以用于安防系统,通过运动传感器监测,自动触发报警系统,保障家庭安全。

智能电器管理

智能家居自动化控制系统可以用于电器管理,通过监测家居环境数据,自动控制家电设备的运行状态,优化能源利用。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

6. 问题解决方案与优化

常见问题及解决方案

传感器数据不准确

确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。

解决方案:检查传感器与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。同时,定期对传感器进行校准,确保数据准确。

家居设备控制不稳定

优化控制算法和硬件配置,减少家居设备控制的不稳定性,提高系统反应速度。

解决方案:优化控制算法,调整参数,减少振荡和超调。使用高精度传感器,提高数据采集的精度和稳定性。选择更高效的处理器,提高数据处理的响应速度。

数据传输失败

确保Wi-Fi模块与STM32的连接稳定,优化通信协议,提高数据传输的可靠性。

解决方案:检查Wi-Fi模块与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。优化通信协议,减少数据传输的延迟和丢包率。选择更稳定的通信模块,提升数据传输的可靠性。

显示屏显示异常

检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。

优化建议

数据集成与分析

集成更多类型的传感器数据,使用数据分析技术进行家居环境状态的预测和优化。

建议:增加更多家居监测传感器,如空气质量传感器、烟雾传感器等。使用云端平台进行数据分析和存储,提供更全面的家居环境监测和管理服务。

用户交互优化

改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。

建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时环境参数图表、历史记录等。

智能化控制提升

增加智能决策支持系统,根据历史数据和实时数据自动调整家居控制策略,实现更高效的家居管理和控制。

建议:使用数据分析技术分析家居数据,提供个性化的控制建议。结合历史数据,预测可能的问题和需求,提前优化控制策略。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中实现智能家居自动化控制系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能家居自动化控制系统。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/49423.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【第一天】计算机网络 TCP/IP模型和OSI模型,从输入URL到页面显示发生了什么

TCP/IP模型和OSI模型 这两个模型属于计算机网络的体系结构。 OSI模型是七层模型&#xff0c;从上到下包括&#xff1a; 应用层&#xff0c;表示层&#xff0c;会话层&#xff0c;传输层&#xff0c;网络层&#xff0c;数据链路层&#xff0c;物理层 TCP/IP模型是四层模型&…

谷粒商城实战笔记-52~53-商品服务-API-三级分类-新增-修改

文章目录 一&#xff0c;52-商品服务-API-三级分类-新增-新增效果完成1&#xff0c;点击Append按钮&#xff0c;显示弹窗2&#xff0c;测试完整代码 二&#xff0c;53-商品服务-API-三级分类-修改-修改效果完成1&#xff0c;添加Edit按钮并绑定事件2&#xff0c;修改弹窗确定按…

C++学习笔记01-语法基础(问题-解答自查版)

前言 以下问题以Q&A形式记录&#xff0c;基本上都是笔者在初学一轮后&#xff0c;掌握不牢或者频繁忘记的点 Q&A的形式有助于学习过程中时刻关注自己的输入与输出关系&#xff0c;也适合做查漏补缺和复盘。 本文对读者可以用作自查&#xff0c;答案在后面&#xff0…

STM32--HAL库--定时器篇

一&#xff1a;如何配置定时器 打开对应工程串口配置好的工程&#xff08;上一篇博客&#xff09;做如下配置&#xff1a; 定时器的中断溢出时间计算公式是&#xff1a; 由图得T100*1000/100MHz 注&#xff1a;100MHz100000000 所以溢出时间等于1ms 关于上图4的自动重装…

ARM功耗管理之Suspend-to-RAM实验

安全之安全(security)博客目录导读 ARM功耗管理精讲与实战汇总参见&#xff1a;Arm功耗管理精讲与实战 思考&#xff1a;睡眠唤醒实验&#xff1f;压力测试&#xff1f;Suspend-to-Idle/RAM/Disk演示&#xff1f; 1、实验环境准备 2、软件代码准备 3、唤醒源 4、Suspen…

计算机技术基础 (bat 批处理)Note4

计算机技术基础 &#xff08;bat 批处理&#xff09;Note4 本节主要讲解一些 bat 批处理文件中的一些特殊符号&#xff0c;包括 , %, > 和 >>, |, ^, & 和 && 和 ||, " ", ,, ;, ()。 回显屏蔽符 回显屏蔽符 : 这个字符在批处理中的意思是关…

linux 部署flask项目

linux python环境安装: https://blog.csdn.net/weixin_41934979/article/details/140528410 1.创建虚拟环境 python3.12 -m venv .venv 2.激活环境 . .venv/bin/activate 3.安装依赖包(pip3.12 install -r requirements.txt) pip3.12 install -r requirements.txt 4.测试启…

微服务安全——OAuth2详解、授权码模式、SpringAuthorizationServer实战、SSO单点登录、Gateway整合OAuth2

文章目录 Spring Authorization Server介绍OAuth2.0协议介绍角色OAuth2.0协议的运行流程应用场景授权模式详解客户端模式密码模式授权码模式简化模式token刷新模式 OAuth 2.1 协议介绍授权码模式PKCE扩展设备授权码模式拓展授权模式 OpenID Connect 1.0协议Spring Authorizatio…

EXO-chatgpt_api 解释

目录 chatgpt_api 解释 resolve_tinygrad_tokenizer 函数 resolve_tokenizer 函数 调试和日志记录 参数 返回值 初始化方法 __init__ 异步方法 注意事项 chatgpt_api 解释 展示了如何在一个项目中组织和导入各种库、模块和类,以及如何进行一些基本的Web服务设置和配置…

机器学习 | 回归算法原理——最小二乘法

Hi&#xff0c;大家好&#xff0c;我是半亩花海。很早便想学习并总结一本很喜欢的机器学习图书——立石贤吾的《白话机器学习的数学》&#xff0c;可谓通俗易懂&#xff0c;清晰形象。那就在此分享并作为学习笔记来记录我的学习过程吧&#xff01;本章的回归算法原理基于《基于…

智能化数据安全分类分级实践

在当今数字化浪潮的迅猛推进下&#xff0c;企业和组织正遭遇前所未有的数据安全治理挑战。随着海量数据的不断产生、传输、存储和应用&#xff0c;它们面临着来自黑客攻击、内部人员恶意泄露以及数据误操作等多重安全威胁的侵袭。因此&#xff0c;构建一个健全的数据安全治理体…

【快速逆向四/无过程/有源码】浙江工商职业技术学院 统一身份认证

逆向日期&#xff1a;2024.07.23 使用工具&#xff1a;Node.js 加密方法&#xff1a;RSAUtils 文章全程已做去敏处理&#xff01;&#xff01;&#xff01; 【需要做的可联系我】 AES解密处理&#xff08;直接解密即可&#xff09;&#xff08;crypto-js.js 标准算法&#xf…

Unity ShaderLab基础

[原文1] [参考2] 一 基础知识 1. 1 着色器语言分类: 语言说明HLSL基于 OpenGL 的 OpenGL Shading LanguageGLSL基于 DirectX 的 High Level Shading LanguageCGNVIDIA 公司的 C for GraphicShader LabUnity封装了CG,HLSL,GLSL的Unity专用着色器语言,具有跨平台,图形化编程,便…

Modbus转BACnet/IP网关BA100-配硬件说明

在现代自动化系统中&#xff0c;不同设备和系统之间的通信至关重要&#xff0c;Modbus和BACnet/IP协议虽然各有优势&#xff0c;但它们之间的直接通信存在障碍。钡铼Modbus转BACnet/IP网关作为连接这两种协议的桥梁&#xff0c;允许不同系统之间的无缝数据交换。 一、Modbus转…

Ubuntu22.04安装X11vnc方法

一、问题描述 客户想使用Ubuntu图形化功能,需要远程去操作界面 二、安装方法如下 通常情况&#xff0c;ubuntu不允许root用户运行GUI程序。因此&#xff0c;我们创建普通用户进行安装配置X11vnc服务 1.安装x11vnc程序包 sudo apt-get update sudo apt-get install -y x11v…

内网隧道——HTTP隧道

文章目录 一、ReGeorg二、Neo-reGeorg三、Pivotnacci 实验网络拓扑如下&#xff1a; 攻击机kali IP&#xff1a;192.168.111.0 跳板机win7 IP&#xff1a;192.168.111.128&#xff0c;192.168.52.143 靶机win server 2008 IP&#xff1a;192.168.52.138 攻击机与Web服务器彼此之…

pdf压缩在线免费 pdf压缩在线免费网页版 在线pdf压缩在线免费 pdf压缩工具在线免费

在数字化时代&#xff0c;pdf文件已经成为我们工作、学习和生活中的重要组成部分。然而&#xff0c;体积庞大的pdf文件往往给我们的存储空间、传输速度带来不小的压力。本文将为您揭秘几种简单有效的pdf文件压缩方法&#xff0c;让您轻松应对文件体积过大带来的困扰。 方法一、…

PLC通过IGT-SER系列智能网关快速实现WebService接口调用案例

IGT-SER系列智能网关支持PLC设备数据对接到各种系统平台&#xff0c;包括SQL数据库&#xff0c;以及MQTT、HTTP协议的数据服务端&#xff1b;通过其边缘计算功能和脚本生成的工具软件&#xff0c;非常方便快速实现PLC、智能仪表与WebService服务端通信。 本文是通过智能网关读取…

如何切换网络IP地址?IP切换的应用与方法

随着互联网的发展和普及&#xff0c;我们日常生活中的各种操作和通讯越来越依赖互联网。互联网上存在的一些问题和限制使得更换IP地址成为必要的步骤。下面我们将探讨在互联网业务中&#xff0c;需要更换IP地址的原因与方法。 一、IP轮换的应用 解决访问限制&#xff1a;解决访…

Intellij IDEA多模块分组 实现move to group

新版本idea&#xff0c;没有了move to group的功能&#xff0c;导致模块很多的时候不能分组。2018版本有。 这个分组是虚拟的&#xff0c;不会在磁盘中实际存在。 要实现这个功能&#xff0c;只需要改modules.xml即可。 步骤 1. 找到配置文件 .idea目录下的moudules.xml 2.…