[排序]hoare快速排序

今天我们继续来讲排序部分,顾名思义,快速排序是一种特别高效的排序方法,在C语言中qsort函数,底层便是用快排所实现的,快排适用于各个项目中,特别的实用,下面我们就由浅入深的全面刨析快速排序。事先声明,快速排序有不同的版本,今天我们讲的是hoare的版本

目录

快排的定义

hoare快排的具体实现

快排的时间复杂度

优化快速排序

三数取中

小区间优化

相遇位置比key小的问题


快排的定义

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

hoare快排的具体实现

我们先看一下排序的动态图

快排的思想与其他的排序不同,其他排序的基本思想是将最大或者最小的数找出来,放到某一个位置,而在快排中,是将一个数排到有序的位置,然后将其左右分割。

快排会有key,left,right三个变量,key就是当前排序的数的下标,left就是左端,right就是右端

我们先看一下单趟排序的逻辑

注意:左右寻找比key位置大或小的数时,必须从key的另一侧开始移动不然会出现排序错误的问题,这个问题我们之后会具体讲到

那么我们用代码实现一下单趟排序的逻辑

void swap(int* a, int* b)
{int tmp = *a;*a = *b;*b = tmp;
}
void quicksort(int a[],int left,int right)
{int key = left;//我们假设key位于left的位置int begin = left;int end = right; //用begin和end记录left和right的位置//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值while (begin < end){//右边找小while (begin<end&&a[end] >= a[key]){end--;}//左边找大while (begin<end&&a[begin] <= a[key]){begin++;}swap(&a[begin], &a[end]);}swap(&a[begin], &a[key]);
}

既然单趟排序的逻辑我们已经清楚了,那么我们下一步就该进行多次单趟排序的逻辑,这样我们就能完成快排的逻辑

我们这里先用递归的思想进行实现,看下面的逻辑图

以上便是快排多次进行单词排序的逻辑,即快速排序的全部实现逻辑

下面我们用代码进行实现

void quicksort(int a[],int left,int right)
{if (left >= right){return;}int key = left;//我们假设key位于left的位置int begin = left;int end = right; //用begin和end记录left和right的位置//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值while (begin < end){//右边找小while (begin<end&&a[end] >= a[key]){end--;}//左边找大while (begin<end&&a[begin] <= a[key]){begin++;}swap(&a[begin], &a[end]);}swap(&a[begin], &a[key]);key = begin;//[left,key-1] key [key+1,right]quicksort(a, left, key - 1);//左区间递归排序quicksort(a, key+1, right);//右区间递归排序
}

这里我们还要理解一下,递归终止条件

left >= right

以上即快速排序的基本实现

快排的时间复杂度

我们都知道判断一个排序效率的方法就是比较其时间复杂度

那么快排的时间复杂度是多少呢?

如果从代码的角度看,这个时间复杂度是非常难以计算的

我们先来看快排的递归层数,我们根据上面的逻辑图,可以大致的发现,快排是将数组类似分为二叉树的结构

因此递归的层数为logN层,而在单趟排序中end和begin从两边开始走直到相遇一共走了N步

从这个角度看快排的时间复杂度为  O(NlogN)

因此快排是和堆排序,希尔排序位于同一赛道的排序算法,都是极其高效的算法

排序十万个数(单位毫秒ms)

排序一百万个数 (单位毫秒ms)

 排序五百万个数 (单位毫秒ms)

可以看到当前的快排,并没有想象中那么快,甚至在数多的情况下和堆排序以及希尔排序,还显得效率较低。
而且在排有序数组的情况下,不要说一百万个数,在十万个数有序数组中,会发生一个大问题

1,效率变低

2.由于递归层次太深,每次递归都要建立新的栈帧,这就会可能导致栈溢出的问题 

我们来分析一下问题,之前在正常情况下,时间复杂度为N*logN的前提是每次都是二分递归,即key位置的数都是接近中间的值,此时当二分递归时,递归的深度就是logN,但如果按上面有序情况下,递归的深度是N,这就是上面问题的来源

因此我们现在的快排还是有明显的缺陷

优化快速排序

那么我们如何解决这个问题呢?

避免有序情况下,效率退化

我们可以改变key的选取,如果我们每次都选取最左侧值为key或者最右侧值为key,就会导致上面递归过深的问题,所以我们不能固定选key。

1.随机选key

随机数选key虽然能够解决问题,但是还是有些不靠谱,毕竟是随机的

2.三数取中

最左边,最右边,中间,选取不是最大的和最小的作key

为了保证代码的逻辑不发生变化,即还从最左端的为key,我们就将三数取中的值与最左边的值进行交换,再执行代码逻辑。

三数取中

三数取中是取大小是中间的值,然后完成最好的情况就是二分的情况,即效率最高的情况

运用分支语句进行两两比较返回中间值,直接放代码,逻辑比较简单,不作解释

int GetMid(int* a, int left, int right)
{int mid = (left + right) / 2;//left mid rightif (a[mid] > a[left]){if (a[mid] < a[right])return mid;else if (a[left] > a[right])return left;elsereturn right;}else{if (a[mid] > a[right])return mid;else if (a[right] > a[left])return left;elsereturn right;}
}

那么我们的快排中需要将交换left和三数取中mid的位置,即加上两行代码,我们其他的逻辑不发生变化

代码如下

void quicksort(int a[],int left,int right)
{if (left >= right){return;}//三数取中int mid = GetMid(a, left, right);swap(&a[mid], &a[left]);  int key = left;//我们假设key位于left的位置int begin = left;int end = right; //用begin和end记录left和right的位置//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值while (begin < end){//右边找小while (begin<end&&a[end] >= a[key]){end--;}//左边找大while (begin<end&&a[begin] <= a[key]){begin++;}swap(&a[begin], &a[end]);}swap(&a[begin], &a[key]);key = begin;//[left,key-1] key [key+1,right]quicksort(a, left, key - 1);quicksort(a, key+1, right);}

在优化后,我们再来比较一下快排的效率

 可以发现,在三数取中后,快排效率也有了优化,而且避免了在有序情况下,递归过深的问题

小区间优化

我们的快排虽然有了优化,但是还有一点缺陷,描述如下图所示

而我们小区间优化,只需要加一个判断语句,对数据个数进行判断,若小于10就用其他的排序方法,大于10就正常递归排序

那么我们选用其他的排序方法要用哪个比较好呢?

我们有插入,堆排序,选择,冒泡,希尔排序,归并排序

我们可以一一进行比较与排除

希尔排序不适用于小数据的排序,堆排序虽然可以,但是我们想一下,没有必要为10个数再单独进行建堆,不然就得不偿失了;归并也是利用递归,没有必要。

那么我们就剩下了冒泡,选择,插入

而在之前的文章中,我们分析过,冒泡和选择排序是远远不如插入排序的效率的

那么我们就选择插入排序

在快排的底层中,小区间优化也是使用的插入排序,这就是插入排序的实际应用

代码如下

	//小区间优化,不再递归分割排序,减少递归次数if ((right - left + 1) < 10){InsertSort(a + left, right - left - 1);}

以上便是优化快排的全部实现

下面放上优化过快排代码

int GetMid(int* a, int left, int right)
{int mid = (left + right) / 2;//left mid rightif (a[mid] > a[left]){if (a[mid] < a[right])return mid;else if (a[left] > a[right])return left;elsereturn right;}else{if (a[mid] > a[right])return mid;else if (a[right] > a[left])return left;elsereturn right;}
}
void swap(int* a, int* b)
{int tmp = *a;*a = *b;*b = tmp;
}
void quicksort(int a[],int left,int right)
{if (left >= right){return;}//小区间优化,不再递归分割排序,减少递归次数if ((right - left + 1) < 10){InsertSort(a + left, right - left - 1);}else{//三数取中int mid = GetMid(a, left, right);swap(&a[mid], &a[left]);  int key = left;//我们假设key位于left的位置int begin = left;int end = right; //用begin和end记录left和right的位置//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值while (begin < end){	//右边找小while (begin<end&&a[end] >= a[key]){end--;}//左边找大while (begin<end&&a[begin] <= a[key]){begin++;}swap(&a[begin], &a[end]);}swap(&a[begin], &a[key]);key = begin;//[left,key-1] key [key+1,right]quicksort(a, left, key - 1);quicksort(a, key+1, right);}
}
int main()
{int a[] = { 6,1,2,7,9,3,4,5,10,8 };int sz = sizeof(a) / sizeof(a[0]);quicksort(a, 0, sz - 1);for (int i = 0; i < sz - 1; i++){printf("%d ", a[i]);}return 0;
}

相遇位置比key小的问题

之前我们遗留了一个小问题,就是怎么保证eft和right相遇位置的值一定比key位置小,这样交换后,会让key的左右两边分为比key大的和比key小的,如果相遇位置比key要大的话,那就让数据排序毁了。

那么如何保证相遇位置比key小呢?

先说结论,就是我们上面所说的

当左边作key时,就让右边先走,可以保证相遇位置比key小

以下即解释:

以上是便是hoare排序相关问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/49252.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

visio保存一部分图/emf图片打开很模糊/emf插入到word或ppt中很模糊

本文主要解决三个问题 visio保存一部分图 需求描述&#xff1a;在一个visio文件中画了很多个图&#xff0c;但我只想把其中一部分保存成某种图片格式&#xff0c;比如jpg emf png之类的&#xff0c;以便做后续的处理。 方法&#xff1a;超级容易。 选中希望保存的这部分图&…

基于上下文的自适应二进制算术编码 CABAC 熵编码介绍

介绍 CABAC&#xff08;Context-Based Adaptive Binary Arithmetic Coding&#xff0c;基于上下文的自适应二进制算术编码&#xff09;是H.265/HEVC视频编码标准中使用的一种高效的熵编码技术。其核心原理是将自适应二进制算术编码与上下文模型相结合&#xff0c;以实现对视频…

630-基于PCIe的高速模拟AD采集卡

一、产品概述 基于PCIe的一款分布式高速数据采集系统&#xff0c;实现多路AD的数据采集&#xff0c;并通过PCIe传输到存储计算服务器&#xff0c;实现信号的分析、存储。 产品固化FPGA逻辑&#xff0c;适配2路1Gsps/2路2Gsps采集&#xff0c;实现PCIe的触发采集&#xf…

vue3前端开发-小兔鲜项目-使用逻辑函数拆分业务模块

vue3前端开发-小兔鲜项目-使用逻辑函数拆分业务模块&#xff01;其实就是把一些单独的业务代码组成一个js文件。抽离出去后&#xff0c;方便后面的维护。 如图&#xff0c;在一级分类下面新建一个文件夹。composables里面新建2个js文件。 分别封装之前的分类&#xff0c;和ban…

[Spring] Spring日志

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…

AI在候选人评估中的作用:精准筛选与HR决策的助力

一、引言 随着科技的迅猛发展&#xff0c;人工智能&#xff08;AI&#xff09;技术已逐渐渗透到各个行业和领域&#xff0c;人力资源管理&#xff08;HRM&#xff09;亦不例外。在候选人评估的环节中&#xff0c;AI技术以其高效、精准的特性&#xff0c;正在逐步改变着传统的招…

深度学习 —— 个人学习笔记6(权重衰减)

声明 本文章为个人学习使用&#xff0c;版面观感若有不适请谅解&#xff0c;文中知识仅代表个人观点&#xff0c;若出现错误&#xff0c;欢迎各位批评指正。 十三、权重衰减 使用以下公式为例做演示&#xff1a; y 0.05 ∑ i 1 d 0.01 x i ε w h e r e ε &#xff5e; N…

从PyTorch官方的一篇教程说开去(4 - Q-table来源及解决问题实例)

偷个懒&#xff0c;代码来自比很久之前看的书&#xff0c;当时还在用gym&#xff0c;我做了微调以升级到gymnasium当前版本&#xff0c;确保可以正常演示。如果小伙伴或者原作者看到了麻烦提一下&#xff0c;我好备注一下出处。 您的进步和反馈是我最大的动力&#xff0c;小伙…

语音识别 语音识别项目相关笔记内容

语音识别 语音识别项目相关笔记内容 语音识别应用范畴语音识别框架语音基本操作使用scipy.io.wavfile读取wav音频文件获取采样率、长度、通道数使用numpy读取pcm格式音频文件读取wav音频文件,并绘制图像读取双声道的wav音频文件,分别绘制不同声道的波形图读取一个采样率为16k…

【Docker】Docker Desktop - WSL update failed

问题描述 Windows上安装完成docker desktop之后&#xff0c;第一次启动失败&#xff0c;提示&#xff1a;WSL update failed 解决方案 打开Windows PowerShell 手动执行&#xff1a; wsl --set-default-version 2 wsl --update

使用 vue-element-plus-admin 框架遇到的问题记录

项目打包遇到的问题&#xff1a; 打包语句&#xff1a;pnpm run build:pro 报错信息&#xff1a; Error: [vite]: Rollup failed to resolve import "E:/workplace_gitee/xxx/node_modules/.pnpm/element-plus2.5.5_vue3.4.15/node_modules/element-plus/es/components…

【精品资料】数据安全治理解决方案(27页PPT)

引言&#xff1a;数据安全治理解决方案是一个综合性的体系&#xff0c;旨在通过策略、技术、流程和人力的有机结合&#xff0c;全面提升组织的数据安全防护能力&#xff0c;保障数据资产的安全与合规。 方案介绍&#xff1a;数据安全治理解决方案是组织为确保其数据资产的安全性…

Spark内核的设计原理

导读&#xff1a; 本期是DataFun深入浅出Apache Spark第一期的分享&#xff0c;主讲老师耿嘉安开场介绍了自己的从业经历&#xff0c;当前就职的数新网络与Spark相关的两款产品赛博数智引擎CyberEngine和赛博数据智能平台CyberData。 本次分享题目为《Spark内核的设计原理》&…

智能化一体闸门:助力行业发展

随着科技的飞速发展&#xff0c;智能化技术已经渗透到各个行业和领域&#xff0c;其中水利行业也不例外。智能化一体闸门以其高效、智能、便捷的特点&#xff0c;正助力着行业发展。 一、智能化一体闸门的定义与特点 智能化一体闸门&#xff0c;是集成了先进传感技术、自动控制…

Transformer之Swin-Transformer结构解读

写在最前面之如何只用nn.Linear实现nn.Conv2d的功能 很多人说&#xff0c;Swin-Transformer就是另一种Convolution&#xff0c;但是解释得真就是一坨shit&#xff0c;这里我郑重解释一下&#xff0c;这是为什么&#xff1f; 首先&#xff0c;Convolution是什么&#xff1f; Co…

什么是离线语音识别芯片?与在线语音识别的区别

离线语音识别芯片是一种不需要联网和其他外部设备支持&#xff0c;‌上电即可使用的语音识别系统。‌它的应用场合相对单一&#xff0c;‌主要适用于智能家电、‌语音遥控器、‌智能玩具等&#xff0c;‌以及车载声控和一部分智能家居。‌离线语音识别芯片的特点包括小词汇量、…

Python文件写入读取,文件复制以及一维,二维,多维数据存储

基础解释 在 Python 中&#xff0c;文件操作的模式除了 w &#xff08;只写&#xff09;、 a &#xff08;追加写&#xff09;、 r &#xff08;只读&#xff09;外&#xff0c;还有以下几种常见模式&#xff1a;- r &#xff1a;可读可写。该文件必须已存在&#xff0c;写操…

分类损失函数 (一) torch.nn.CrossEntropyLoss()

1、交叉熵 是一种用于衡量两个概率分布之间的距离或相似性的度量方法。机器学习中&#xff0c;交叉熵常用于损失函数&#xff0c;用于评估模型的预测结果和实际标签的差异。公式&#xff1a; y&#xff1a;真是标签的概率分布&#xff0c;y&#xff1a;模型预测的概率分布 …

数据库中的内、外、左、右连接

常用的数据库连表形式&#xff1a; 内连接 &#xff1a;inner join 外连接 &#xff1a;outer join 左外连接 &#xff1a;left outer join 左连接 &#xff1a;left join 右外连接 right outer join 右连接&#xff1a; right join 全连接 full join 、union 一、内连接 内…

企业私有云的部署都有哪些方式?

如今常见的企业私有云的部署方式有自建私有云、托管私有云、虚拟私有云、混合云、容器化私有云、本地数据中心部署等。如今&#xff0c;企业私有云的部署呈多样化趋势&#xff0c;以用来满足各个企业的具体需求。以下是RAK部落小编为大家汇总的企业私有云常见的部署方式&#x…