政安晨【零基础玩转各类开源AI项目】基于Ubuntu系统部署Hallo :针对肖像图像动画的分层音频驱动视觉合成

政安晨的个人主页:政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: 零基础玩转各类开源AI项目

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标在Ubuntu系统上部署Hallo,实现训练和推理


背景介绍 

由语音音频输入驱动的肖像图像动画领域在生成逼真的动态肖像方面取得了重大进展。

这项研究深入探讨了同步面部运动的复杂性,以及在基于扩散的方法框架内创建视觉上吸引人、时间上一致的动画。

我们的创新方法摒弃了依赖参数模型进行中间面部表征的传统模式,采用了端到端扩散模式,并引入了分层音频驱动视觉合成模块,以提高音频输入和视觉输出(包括嘴唇、表情和姿势运动)之间的对齐精度。 我们提出的网络架构无缝集成了基于扩散的生成模型、基于 UNet 的去噪器、时序对齐技术和参考网络。 所提出的分层音频驱动视觉合成技术可对表情和姿势多样性进行自适应控制,从而更有效地实现针对不同身份的个性化定制。

通过结合定性和定量分析的综合评估,我们的方法在图像和视频质量、嘴唇同步精度和动作多样性方面都有明显的提升。

项目地址为:

https://github.com/fudan-generative-vision/halloicon-default.png?t=N7T8https://github.com/fudan-generative-vision/hallo

本方法所提议的流程概览如下:

具体而言,我们将包含肖像的参考图像与相应的音频输入整合,并用于驱动肖像动画。

可选的视觉合成权重可用于平衡嘴唇、表情和姿势权重。

ReferenceNet编码全局视觉纹理信息,用于实现一致且可控的角色动画。

人脸和音频编码器分别生成高保真的肖像身份特征和将音频编码为动作信息。

层次化音频驱动的视觉合成模块建立了音频和视觉组件(嘴唇、表情、姿势)之间的关系,并在扩散过程中使用UNet降噪器。

音频驱动的层次视觉合成的可视化及原始全方法与我们提出的层次音频-视觉交叉注意力之间的比较分析。

训练与推理

训练

训练过程包括两个不同的阶段:

(1) 在第一阶段的训练中,利用参考图像和目标视频帧对生成单个视频帧。

VAE编码器和解码器的参数以及面部图像编码器被固定,同时允许优化ReferenceNet和去噪UNet的空间交叉注意力模块的权重,以提高单帧生成能力。提取包含14帧的视频片段作为输入数据,从面部视频片段中随机选择一帧作为参考帧,从同一个视频中选择另一帧作为目标图像。

(2) 在第二阶段的训练中,使用参考图像、输入音频和目标视频数据进行视频序列训练。

ReferenceNet和去噪UNet的空间模块保持静态,专注于增强视频序列生成能力。这个阶段主要侧重于训练层次化的音频-视觉交叉注意力,建立音频作为运动指导和嘴唇、表情和姿势的视觉信息之间的关系。

此外,引入运动模块来改善模型的时间连贯性和平滑性,该模块使用来自AnimateDiff 的预设权重进行初始化。在这个阶段,从视频剪辑中随机选择一个帧作为参考图像。

与现有的肖像图像动画方法在HDTF数据集上的定量比较。本框架提出的方法在生成高质量、时间上连贯的说话头像动画以及优越的嘴唇同步性能方面表现出色。

上图为:在HDTF数据集上与现有方法的定性比较。

推理

在推理阶段,网络以一张参考图像和驾驶音频作为输入,根据相应的音频生成一个动画化的视频序列。为了产生视觉上一致的长视频,我们利用上一个视频片段的最后2帧作为下一个片段的初始k帧,实现逐步递增的视频片段生成。

开始部署

1. 把项目源码下载到本地

git clone git@github.com:fudan-generative-vision/hallo.git

2. 创建 conda 环境

  conda create -n hallo python=3.10conda activate hallo

 

 

3. 使用 pip 安装软件包

(此外,还需要 ffmpeg:sudo apt-get install ffmpeg, 如果没有安装的话可以在系统中安装一下)

4. 下载预训练模型

您可以从该项目的 HuggingFace 软件仓库轻松获取推理所需的所有预训练模型。

通过下面的 cmd 将预训练模型克隆到 ${PROJECT_ROOT}/pretrained_models 目录中:

git lfs install
git clone https://huggingface.co/fudan-generative-ai/hallo pretrained_models

 

 

 

 

最后,这些预训练模型的组织结构如下:

./pretrained_models/
|-- audio_separator/
|   |-- download_checks.json
|   |-- mdx_model_data.json
|   |-- vr_model_data.json
|   `-- Kim_Vocal_2.onnx
|-- face_analysis/
|   `-- models/
|       |-- face_landmarker_v2_with_blendshapes.task  # face landmarker model from mediapipe
|       |-- 1k3d68.onnx
|       |-- 2d106det.onnx
|       |-- genderage.onnx
|       |-- glintr100.onnx
|       `-- scrfd_10g_bnkps.onnx
|-- motion_module/
|   `-- mm_sd_v15_v2.ckpt
|-- sd-vae-ft-mse/
|   |-- config.json
|   `-- diffusion_pytorch_model.safetensors
|-- stable-diffusion-v1-5/
|   `-- unet/
|       |-- config.json
|       `-- diffusion_pytorch_model.safetensors
`-- wav2vec/`-- wav2vec2-base-960h/|-- config.json|-- feature_extractor_config.json|-- model.safetensors|-- preprocessor_config.json|-- special_tokens_map.json|-- tokenizer_config.json`-- vocab.json

5. 准备推理数据

Hallo 对输入数据有几个简单的要求:

源图像:

1. 应裁剪成正方形。

2. 人脸应是主要焦点,占图像的 50%-70%。

3. 人脸应朝向前方,旋转角度小于 30°(无侧面轮廓)。

驱动音频:

1. 必须是 WAV 格式。

2. 必须是英语,因为我们的训练数据集仅使用英语。

3. 确保人声清晰,背景音乐也可接受。 

项目提供了一些样本供您参考(文件在项目源码中,小伙伴们自行获取 -- 政安晨)。

6. 运行推理

只需运行 scripts/inference.py,并将 source_image 和 driving_audio 作为输入即可:

python scripts/inference.py --source_image examples/reference_images/1.jpg --driving_audio examples/driving_audios/1.wav

动画结果默认保存为 ${PROJECT_ROOT}/.cache/output.mp4。 你可以通过 --output 来指定输出文件名。 您可以在 examples 文件夹中找到更多推理示例。

在使用推理的过程中,您可能会遇到问题,比如提示xformers不可用,重新安装xformers等。

按照提示地址打开xformers官网重新安装:

conda install xformers -c xformers

之后,再重新按照上述方式在miniconda虚拟环境中重装依赖。

接下来,就可以正常操作了,我的示例如下:

python scripts/inference.py --source_image examples/YDBaba/2.jpg --driving_audio examples/YDBaba/1.wav

更多操作说明如下:

usage: inference.py [-h] [-c CONFIG] [--source_image SOURCE_IMAGE] [--driving_audio DRIVING_AUDIO] [--output OUTPUT] [--pose_weight POSE_WEIGHT][--face_weight FACE_WEIGHT] [--lip_weight LIP_WEIGHT] [--face_expand_ratio FACE_EXPAND_RATIO]options:-h, --help            show this help message and exit-c CONFIG, --config CONFIG--source_image SOURCE_IMAGEsource image--driving_audio DRIVING_AUDIOdriving audio--output OUTPUT       output video file name--pose_weight POSE_WEIGHTweight of pose--face_weight FACE_WEIGHTweight of face--lip_weight LIP_WEIGHTweight of lip--face_expand_ratio FACE_EXPAND_RATIOface region

关于训练

为训练准备数据

训练数据使用了一些与推理所用源图像类似的会说话的人脸视频,也需要满足以下要求:

1. 照片应裁剪成正方形。

2. 面部应是主要焦点,占画面的 50%-70%。

3. 面部应朝向前方,旋转角度小于 30°(无侧面轮廓)。

将原始视频整理到以下目录结构中:

dataset_name/
|-- videos/
|   |-- 0001.mp4
|   |-- 0002.mp4
|   |-- 0003.mp4
|   `-- 0004.mp4

您可以使用任何数据集名称,但要确保视频目录的名称如上所示。

接下来,使用以下命令处理视频:

python -m scripts.data_preprocess --input_dir dataset_name/videos --step 1
python -m scripts.data_preprocess --input_dir dataset_name/videos --step 2

:由于步骤 1 和步骤 2 执行不同的任务,因此应按顺序执行。

步骤 1 将视频转换为帧,从每个视频中提取音频,并生成必要的掩码。

步骤 2 使用 InsightFace 生成人脸嵌入,使用 Wav2Vec 生成音频嵌入,需要 GPU。 要进行并行处理,可使用 -p 和 -r 参数。 -p参数指定要启动的实例总数,将数据分成 p 部分。 -r参数指定当前进程应处理的部分。 您需要使用不同的 -r 值手动启动多个实例。

使用以下命令生成元数据 JSON 文件:

python scripts/extract_meta_info_stage1.py -r path/to/dataset -n dataset_name
python scripts/extract_meta_info_stage2.py -r path/to/dataset -n dataset_name

将 path/to/dataset 替换为视频父目录的路径,例如上例中的 dataset_name。 这将在 ./data 目录中生成 dataset_name_stage1.json 和 dataset_name_stage2.json。

训练

更新配置 YAML 文件 configs/train/stage1.yaml 和 configs/train/stage2.yaml 中的数据元路径设置:

#stage1.yaml
data:
  meta_paths:
    - ./data/dataset_name_stage1.json

#stage2.yaml
data:
  meta_paths:
    - ./data/dataset_name_stage2.json

使用以下命令开始训练:

accelerate launch -m \
  --config_file accelerate_config.yaml \
  --machine_rank 0 \
  --main_process_ip 0.0.0.0 \
  --main_process_port 20055 \
  --num_machines 1 \
  --num_processes 8 \
  scripts.train_stage1 --config ./configs/train/stage1.yaml

加速使用说明

加速启动命令用于以分布式设置启动训练过程。

accelerate launch [arguments] {training_script} --{training_script-argument-1} --{training_script-argument-2} ...

支持加速的理由

  • -m, --module: 将启动脚本解释为 Python 模块。
  • --config_file: 抱脸加速的配置文件。
  • --machine_rank: 多节点设置中当前机器的等级。
  • --main_process_ip: 主节点的 IP 地址。
  • --main_process_port: 主节点的端口。
  • --num_machines: 参与训练的节点总数。
  • --num_processes: 训练进程总数,与所有机器的 GPU 总数相匹配。

训练论据

  • {training_script}: The training script, such as scripts.train_stage1 or scripts.train_stage2.
  • --{training_script-argument-1}: Arguments specific to the training script. Our training scripts accept one argument, --config, to specify the training configuration file.

对于多节点训练,需要在每个节点上分别手动运行不同机器等级的命令。

训练细节后续会继续为大家展示。—— 政安晨

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/47896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python面试宝典第15题:岛屿数量

题目 在二维网格地图上,1 表示陆地,0 表示水域。如果相邻的陆地可以水平或垂直连接,则它们属于同一块岛屿。请进行编码,统计地图上的岛屿数量。比如:下面的二维网格地图,其岛屿数量为3。 基础知识 解决这类…

国产化低功耗HDMI转VGA方案,大量出货产品,广泛应用在显示器以及广告机产品

芯片描述: 兼具高性能和低成本效益的优点,是一款可以将高清视频 HDMI1.4 数字信号转换成 VGA 模拟信号输出的芯片。不需要提供外部电源,ICNM7301 就可以在正常模式下使用;ICNM7301 广 泛适用于各种市场系统和显示应用体系&#x…

Yum包下载

1. 起因 内网有一台服务器需要升级php版本,维护的同学又不想二进制安装.服务器只有一个光盘的yum仓库 2. 解决方法 解决思路如下: 外网找一台机器配置php8.3.8的仓库外网服务器下载软件集并打包内网服务器上传并解压实现升级 2.1 下载php8.3.8仓库 配置php仓库 rootcent…

【视频讲解】神经网络、Lasso回归、线性回归、随机森林、ARIMA股票价格时间序列预测|附代码数据

全文链接:https://tecdat.cn/?p37019 分析师:Haopeng Li 随着我国股票市场规模的不断扩大、制度的不断完善,它在金融市场中也成为了越来越不可或缺的一部分。 【视频讲解】神经网络、Lasso回归、线性回归、随机森林、ARIMA股票价格时间序列…

新时代多目标优化【数学建模】领域的极致探索——数学规划模型

目录 例1 1.问题重述 2.基本模型 变量定义: 目标函数: 约束条件: 3.模型分析与假设 4.模型求解 5.LINGO代码实现 6.结果解释 ​编辑 7.敏感性分析 8.结果解释 例2 奶制品的销售计划 1.问题重述 ​编辑 2.基本模型 3.模…

【网络】Socket编程

文章目录 正确理解端口号理解源IP地址和目的IP地址认识端口号端口号和进程ID 理解Socket网络字节序socket编程接口创建socket套接字bind绑定套接字listen建立监听accept接受连接connect建立连接sendto发送数据接收数据close关闭套接字 sockaddr结构体 正确理解端口号 理解源IP…

使用崖山YMP 迁移 Oracle/MySQL 至YashanDB 23.2 验证测试

前言 首届YashanDB「迁移体验官」开放后,陆续收到「体验官」们的投稿,小崖在此把优秀的投稿文章分享给大家~今天分享的用户文章是《使用崖山YMP 迁移 Oracle/MySQL 至YashanDB 23.2 验证测试》(作者:尚雷)&#xff0c…

PHP宠物店萌宠小程序系统源码

🐾萌宠生活新方式🐾 🏡【一键直达萌宠世界】 你是否也梦想着拥有一家随时能“云撸猫”、“云吸狗”的神奇小店?现在,“宠物店萌宠小程序”就是你的秘密花园!🌟只需轻轻一点,就能瞬…

什么是股指期货交割?股指期货交割的例子

股指期货交割是指在股指期货合约到期时,投资者需要按照合约规定完成的结算过程。与一般的商品期货、国债期货或外汇期货不同,股指期货采用的是现金交割方式。 股指期货交割的方式 【现金交割】股指期货的交割不需要实际交割一篮子股票指数成分股。相反…

(社恐福音)用python写一个定时弹窗功能

背景 背景是换了一个工作,需要点外卖了 写代码太认真的时候又经常忘记 这时候就需要一个闹钟 手机闹钟声音太大 会影响他人 所以用python 写一个弹窗功能,只影响自己 效果图 原理 管理列表和定时功能通过windows自带的计划完成 python程序不用占用后台…

7月18日学习打卡,数据结构堆

hello大家好呀,本博客目的在于记录暑假学习打卡,后续会整理成一个专栏,主要打算在暑假学习完数据结构,因此会发一些相关的数据结构实现的博客和一些刷的题,个人学习使用,也希望大家多多支持,有不…

ARM架构(二)—— arm v7/v8/v9寄存器介绍

1、ARM v7寄存器 1.1 通用寄存器 V7 V8开始 FIQ个IRQ优先级一样, 通用寄存器:31个 1.2 程序状态寄存器 CPSR是程序状态毒存器,保存条件标志位,中断禁止位,当前处理器模式等控制和状态位。每种异常模式下还存在SPSR&…

《系统架构设计师教程(第2版)》第12章-信息系统架构设计理论与实践-02-信息系统架构

文章目录 1. 概述1.1 信息系统架构(ISA)1.2 架构风格 2. 信息系统架构分类2.1 信息系统物理结构2.1.1 集中式结构2.1.2 分布式结构 2.2 信息系统的逻辑结构1)横向综合2)纵向综合3)纵横综合 3. 信息系统架构的一般原理4…

Android使用ANativeWindow更新surfaceView内容最简Demo

SurfaceView简介 SurfaceView对比View的区别 安卓的普通VIew,都依赖于当前Activity的Window的surface,这个surface用于承载view树从底到顶绘制出来的所有内容,因此任何一个view需要更新时,都需要把所有view中底到顶进行更新,即使使…

解决:Linux上SVN 1.12版本以上无法直接存储明文密码

问题:今天在Linux机器上安装了SVN,作为客户端使用,首次执行SVN相关操作,输入账号密码信息后,后面再执行SVN相关操作(比如"svn update")还是每次都需要输入密码。 回想以前在首次输入…

Python进阶(4)--正则表达式

正则表达式 在Python中,正则表达式(Regular Expression,简称Regex)是一种强大的文本处理工具,它允许你使用一种特殊的语法来匹配、查找、替换字符串中的文本。 在这之前,还记得之前我们是通过什么方法分割…

[论文笔记] pai-megatron-patch Qwen2-CT 长文本rope改yarn

更改: # Copyright (c) 2024 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License a…

【系统架构设计】数据库系统(二)

数据库系统(二) 数据库模式与范式数据库设计数据库设计的方法数据库设计的基本步骤 事务管理并发控制故障和恢复 备份与恢复分布式数据库系统数据仓库数据挖掘NoSQL大数据 数据库模式与范式 数据库设计 数据库设计的方法 目前已有的数据库设计方法可分…

element UI :el-table横向列内容超出宽度,滚动条不显示问题

是否能解决你问题的前提 **看到这篇文章的解决问题的方案之前,请先回忆你是否在项目中的全局样式或者私有组件中去单独设置过滚动条样式。如果有 请继续往下看:**单独设置过滚动条样式代码实例: ::-webkit-scrollbar {/*滚动条整体样式*/wi…

layui 让table里的下拉框不被遮挡

记录:layui 让table里的下拉框不被遮挡 /* 这个是让table里的下拉框不被遮挡 */ .goods_table .layui-select-title,.goods_table .layui-select-title input{line-height: 28px;height: 28px; }.goods_table .layui-table-cell {overflow: visible !important; }.…