ARM架构(二)—— arm v7/v8/v9寄存器介绍

1、ARM v7寄存器

1.1 通用寄存器

在这里插入图片描述
V7 V8开始 FIQ个IRQ优先级一样,
通用寄存器:31个

1.2 程序状态寄存器

CPSR是程序状态毒存器,保存条件标志位,中断禁止位,当前处理器模式等控制和状态位。每种异常模式下还存在SPSR,保存进入异常模式前的CPSR寄存器值,用于异常处理完成后恢复CPSR的状态。User和Sys不属于异常模式,没有CPSR寄存器,在User模式下,受限的CPSR存器称谓APSR(Application Program Status Register)。ARMV7-A中CPSR寄存器的信息如下图所示。
在这里插入图片描述

Field作用
NALU返回运算结果是否为负数
ZALU返回运算结果是否为0
CALU运算是否发生进位
VALU运算是否发生溢出
Qcumulative saturation
JARM是否处于 Jazelle 状态
E控制load/store字节序
Adisables asynchronous aborts,User模式不能操作
I使能/去使能IRQ,User模式不能操作
F使能/去使能FIQ,User模式不能操作
TARM和Thumb状态标志位
GE用于某些SIMD(Single Instruction, Multiple Data)指令
M[4:0]处理器模式:FIQ,IRQ,ABT,SVC,UND,MON,HYP。User模式不能操作

1.3 Coprocessor 15(CP15)寄存器

在ARM v7 上所有的系统寄存器都是按CP15寄存器操作,使用MRC 和MCR指令操作。【ARM V8和ARM V9之后可以直接操作系统寄存器,通过MRS指令操作。】
————————————————————————————————————————————————
MRC p15,0,r0,c1,c0,0; Read System Contril Register configuration data 读协处理器到通用寄存器
ORR r0,r0,#(1<<2) ;set C bit
ORR r0,r0,#(1<<12) ;set I bit
ORR r0,r0,#(1<<11) ;set Z bit
MCR p15 ,0, r0,c1,c0,0 ; Write System Contril Register configuration data 从通用寄存器写回到协处理器
————————————————————————————————————————————————
思考:
1.协处理器是做什么的?
它是Core中,专门用来操作系统寄存器的,所有系统寄存器通过co-processor操作的。
2.aarch64中有没有协处理器?
没有了,后面V8,V9架构之后直接对系统寄存器进行操作。

1.4 系统控制寄存器(cp15.sctlr)

系统控制寄存器SCTLR(System Control Register )用于控制内存,系统功能以及提供状态信息。

2 ARM v8 & ARMv9寄存器介绍

本节内容来自网上
这里介绍的都是AArch64的寄存器。
寄存器分类:
1.general purpose
2.PSTATE Special
3.Other(如sctlr)
4.ID
5.Memory
6.Cache,Address,TLB
7. pmu
8. Exception,Reset
9. Root
10.Secure
11.Virt
12.Timer
13.Thread
14.IMP DEF
15.Debug
16.Trace
17.CTI
18.Float
19.Legacy
20.RAS
21.MPAM
22.Pointer authentication
23.AMU
24.GIC,GICD,GICR,GICC,GICV.GICH,GITS

2.1 AArch64 general-purpose registers

AArch64执行状态提供了32个在任何时间任何特权级下都可访问的64位的通用寄存器每个寄存器都有64位宽,它们通常被称为寄存器X0-X30。
在这里插入图片描述
每个AArch64 64位通用寄存器(X0-X30)也具有32位(W0-W30)形式。
在这里插入图片描述
32位W寄存器取自相应的64位X寄存器的低32位。也就是说,W0映射到X0的低32位,W1映射到X1的低32位。
从W寄存器读取时,忽略相应X寄存器高32位,并保持其它不变。写入W寄存器时,将X寄存器的高32位设置为零。
eg:将0xFFFFFFFF写入W0会将X0设置为0x00000000FFFFFFFF。

2.2 AArch64 special registers

除了31个核心寄存器外,还有几个特殊的寄存器。
在这里插入图片描述
注意:没有被称为X31或W31的寄存器。许多指令被编码,例如:31代表零寄存器ZR(WZR/XZR)。还有一组受限制的指令,其中对一个或多个参数进行编码,使数字31表示堆栈指针(SP)。

当访问零寄存器时,所有写操作都被忽略,所有读操作返回0。请注意,64位形式的SP寄存器不使用X前缀。
在这里插入图片描述

在ARMv8体系结构中,当CPU运行在AArch64状态时,异常返回状态保存在每个异常级别的以下专用寄存器中:

  • Exception Link Register (ELR).
  • Saved Processor State Register (SPSR).
    每个异常级别都有一个专用的SP寄存器,但它不用于保存返回状态
    在这里插入图片描述

2.2.1 零寄存器

零寄存器当用作源寄存器时读操作的结果为零,当用作目标寄存器时则将结果丢弃。你可以在大多数指令中但不是所有指令中使用零寄存器。

2.2.2 栈指针

在ARMv8体系结构中,要使用的栈指针的选择在一定程度上与异常级别是分开的。默认情况下,发生异常时会选择目标异常级别的SPELn作为栈指针。例如,当触发到EL1的异常时,就会选择SP_EL1作为栈指针。每个异常级别都有自己的栈指针,SP_EL0、SP_EL1、SP EL2和SP _EL3。
当AArch64处于ELO以外的异常级别时,处理器可以使用:

  • 与该异常级别相关联的一个专用的64位栈指针(SP_ELn)
  • 与ELO关联的栈指针(SP_EL0)
    ELO永远只能访问SP ELO.

在这里插入图片描述
t后缀表示选择了SP_EL0栈指针。h后缀表示选择了SP_ELn栈指针。
虽然大多数指令都无法使用SP寄存器。但是有一些形式的算术指令可以操作SP。
eg:ADD指令可以读写当前的栈指针以调整函数中的栈指针。

ADD SP,SP, #x10 // Adjust sp to be x10 bytes before its current value

2.2.3 程序计数器

原来的ARMv7指令集的一个特性是R15作为程序计数器(PC),并作为一个通用寄存器使用。PC寄存器的使用带来了一些编程技巧,但它为编译器和复杂的流水线的设计引入了复杂性。在ARMv8中删除了对PC的直接访问,使返回预测更容易,并简化了ABI规范。
PC永远不能作为一个命名的寄存器来访问。但是,可以在某些指令中隐式的使用PC,如PC相对加载和地址生成。PC不能被指定为数据处理或加载指令的目的操作数。

2.2.4 异常链接寄存器(ELR)

异常链接寄存器保存异常返回地址。

2.2.5程序状态保存寄存器(SPSR)

当异常发生时,CPSR中的处理器状态将保存在相关的程序状态保存寄存器(SPSR)中,其方式类似于ARMV7。SPSR保存着异常发生之前的PSTATE的值,用于在异常返回时恢复PSTATE的值。
在这里插入图片描述
AArch64下各bit的含义:

bit含义
N负数标志位,如果结果为负数,则N=1;如果结果为非负数,则N=0。
Z零标志位,如果结果为零,Z=1,否则Z=0。
C进位标志位
V溢出标志位
SS软件步进标志位,表示当一个异常发生时,软件步进是否开启
IL非法执行状态位
D程序状态调试掩码,在异常发生时的异常级别下,来自监视点、断点和软件单步调试事件中的调试异常是否被屏蔽。
ASError(系统错误)掩码位
IIRQ掩码位!
FFIQ掩码位
M[4]异常发生时的执行状态,0表示AArch64
M[3:0]异常发生时的mode或异常级别

2.3 Processor State处理器状态

AArch64没有直接与ARMv7当前程序状态寄存器(CPSR)等价的寄存器。在AArch64中,传统CPSR的组件作为可以独立访问的字段提供。这些状态被统称为处理器状态(PSTATE)。
AArch64的处理器状态或PSTATE字段有以下定义:

bitDescription
NNegative condition flag
ZZero condition flag
CCarry condition flag
VoVerflow condition flag
DDebug mask bit.
ASError mask bit.
IIRO mask bit.
FFlO mask bit.
SSFlO mask bit.
ILIllegal execution state bit.
EL(2)Exception level.
nRWExecution state:0=64-bit 1 =32-bit
SPStack Pointer selector:0=SP ELO1=SP ELn

在AArch64中,你可以通过执行ERET指令从一个异常中返回,这将导致SPSRELn被复制到PSTATE中。这将恢复ALU标志、执行状态、异常级别和处理器分支。从这里开始,将继续从ELR ELn中的地址开始执行。
PSTATE.N,Z.C,V字段可以在EL0级别访问。 其他的字段可以在EL1或更高级别访问,但是这些字段在ELO级别未定义。

2.3.1 Processor State 使用示例

OperandPSTATEfieldsNotes
DAIFSetD,A,I,FDirectly sets any of the PSTATE.(D A L E} bits to 1
DAIFCIrD,A,I,FDirectly clears any of the PSTATE.(D, A, I, F} bits to 0
Switch to the runtime stack i.e. SP ELO 
ldr  x2,[sp,#CTX EL3STATE OFFSET + CTX RUNTIME SP] 
MoV  x20,sp
msr spsle , #MODE SP ELO
mov  sp,x2

2.4 系统寄存器

在AArch64中,系统配置通过系统寄存器进行控制,并使用MSR和MRS指令进行访问。这与ARMV7-A形成了鲜明对比,在ARMV7-A中,这些寄存器通常通过协处理器15(CP15)操作来访问。寄存器的名称会告诉你可以访问它的最低异常级别。

eg:

  • TTBRO EL1可以从EL1、EL2和EL3访问,
  • TTBRO EL2可以从EL2和EL3访问

可以采用以下形式来访问系统寄存器

MRS xO,TTBRO EL1//Move TTBRO EL1 into x8
MSR TTBRO EL1,x0// Move xe into TTBRO EL1

下表来自网上

ARM架构的之前版本使用协处理器来进行系统配置。 但是,AArch64不支持协处理器。

下表显示了异常级别,这些异常级别具有每个寄存器的单独副本。 例如,单独的辅助控制寄存器(ACTLR)以ACTLR_EL1,ACTLR_EL2和ACTLR_EL3的形式存在。

名称寄存器说明n的允许值
ACTLR_ELn辅助控制寄存器控制处理器特定的功能。1,2,3
CCSIDR_ELn当前缓存大小ID寄存器提供有关当前所选缓存的体系结构的信息。1
CLIDR_ELn缓存级别ID寄存器在每个级别上实现的单个或多个高速缓存的类型缓存层次结构的一致性级别和统一级别。1,2,3
CNTFRQ_ELn计数器频率寄存器报告系统计时器的频率。0
CNTPCT_ELn计数器物理计数寄存器保持64位的当前计数值。0
CNTKCTL_ELn计数器内核控制寄存器控制从虚拟计数器生成事件流。还控制从EL0访问物理计数器,虚拟计数器,EL1物理计时器和虚拟计时器。1
CNTP_CVAL_ELn计数器物理计时器比较值寄存器保存EL1物理计时器的比较值。0
CPACR_ELn协处理器访问控制寄存器控制对跟踪,浮点和SIMD功能的访问。1
CSSELR_ELn缓存大小选择寄存器通过指定所需的缓存级别和缓存类型(指令或数据缓存),选择当前的缓存大小ID寄存器CCSIDR_EL1。1
CNTP_CTL_ELn计数器物理控制寄存器控制EL1物理计时器的寄存器。0
CTR_ELn缓存类型寄存器有关集成缓存体系结构的信息。0
DCZID_ELn数据缓存零ID寄存器指示数据缓存零根据虚拟地址(DCZVA)系统指令写入字节值为0的块大小。0
ELR_ELn异常链接寄存器保存导致异常的指令的地址。1,2,3
ESR_ELn异常综合特征寄存器包括有关异常原因的信息。1,2,3
FAR_ELn故障地址寄存器保存虚拟错误地址。1,2,3
FPCR浮点控制寄存器控制浮点扩展行为。该寄存器中的字段映射到AArch32 FPSCR中的等效字段。 .
FPSR浮点状态寄存器提供浮点系统状态信息。该寄存器中的字段映射到AArch32 FPSCR中的等效字段。 .
HCR_ELnHypervisor 配置寄存器控制虚拟化设置,并将异常情况捕获到EL2。2
MAIR_ELn存储器属性间接寄存器在ELn的阶段1翻译的Long-descriptor格式转换表项中,提供对应于可能值的存储器属性编码。1,2,3
MIDR_ELn主ID寄存器代码运行的处理器类型(部件号和版本)。1
MPIDR_ELn多处理器密切关系的寄存器处理器和群集ID,在多核或群集系统中。1
RVBAR_ELn基于地址寄存器的重置向量保存重置向量的基地址,以便发送给ELn的任何异常。1,2,3
SCR_ELn安全配置寄存器控制安全状态和EL3的异常情况。3
SCTLR_ELn系统控制寄存器控制架构功能,例如MMU,缓存和对齐检查。0,1,2,3
SPSR_ELn保存的程序状态寄存器当发生异常时,保持已保存的处理器状态。abt,fiq,irq,und,1,2,3
TCR_ELn转换控制寄存器确定哪个转换表基地寄存器定义了转换表行走(translation table walk)的基地址,该基地址是ELn中,内存访问阶段1转换所需要的。还控制转换表格式并保存可缓存和可共享的信息。1,2,3
TPIDR_ELn用户读/写线程ID寄存器为了操作系统管理的目的,提供一个在ELn上执行的软件可以存储线程标识信息的位置。0,1,2,3
TPIDRRO_ELn用户只读线程ID寄存器提供在EL1或更高版本上执行的软件可以存储线程标识信息的位置。为了操作系统管理的目的,在EL0上执行的软件可以看到这些信息。0
TTBR0_ELn转换表基址寄存器0保存转换表0的基地址,以及它占用的内存的信息。这是ELn内,内存访问阶段1转换的转换表之一。1,2,3
TTBR1_ELn转换表基址寄存器1保存转换表1的基地址,以及它占据的存储器的信息。这是在EL0和EL1内,内存访问阶段1转换的转换表之一1
VBAR_ELn基于向量的地址寄存器保存异常基地址,以便发送到ELn的任何异常1,2,3
VTCR_ELn虚拟化转换控制寄存器控制来自非安全EL0和EL1的内存访问阶段2转换所需的转换表步行。还保存访问的可缓存和可共享信息。2
VTTBR_ELn虚拟化转换表基址寄存器保存来自非安全EL0和EL1的内存访问阶段2转换的转换表的基地址。2

2.5 其他寄存器(如sctlR)

系统控制寄存器(SCTLR)是一个用来控制标准内存、配置系统能力、提高处理器核状态信息的寄存器。
在这里插入图片描述
并不是所有bit在EL1都可用,各bit的含义如下:

  • UCI设置此位后,在AArch64中为DCCVAU、DCCIVAC、DCCVAC和ICIVAU指令启用ELO访问,
  • EE 异常字节顺序:0 小端;1大端
  • EOE ELO显式数据访问的字节序:0 小端;1 大端
  • WXN 写权限不可执行nTWE不陷入WFE,此标志为1表示WFE作为普通指令执行
  • nTWI不陷入WFI,此标志为1表示WFI作为普通指令执行
  • UCT 此标志为1时,开启AArch64的EL0下访问CTR_ELO存器
  • DNE ELO 下访问 DC AVA指令,0 禁止执行,1 允许执行
  • I开启指令缓存,这是在EL0和EL1下的指令缓存的启用位。对可缓存的正常内存的指令访问被缓存。
  • UMA 用户屏蔽访问。当EL0使用AArch64,控制从EL0的中断屏蔽访问。
  • SED 禁止SETEND。在ELO使用AArch32禁ISETEND指令。0 使能;1 禁止
  • ITD 禁止IT指令:0 IT指令有效; 1IT指令被当作16位指令。仅另外16位指令或32位指令的头16位可以使用,这依赖于实现
  • CP15BEN CP15 barrier使能。如果实现了,它是AArch32 CP15DMB,DSB和ISB barrier操作的使能位
  • SAO ELO的栈对齐检查使能位
  • SA栈对齐检查使能位
  • C数据cache使能。EL0和EL1的数据访问使能位。对cacheable普通内存的数据访问都被缓存
  • A 对齐检查使能位
  • M 使能MMU

为访问SCTLR ELn,使用:

MRS <Xt>,SCTLR ELn // Read SCTLR ELn into xt
MSR SCTLR ELn,<Xt>//write xt to SCTLR ELn

3. A64指令集介绍

1、ISA :Instruction System ArchitectureA

  • AArch64:指的是架构
  • A64:指的是指令集
  • arm64:指的是Linux Kernel中的aarch64体系

在这里插入图片描述

2、AArch64的指令集架构
在这里插入图片描述

3.1.指令集总结

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/47876.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《系统架构设计师教程(第2版)》第12章-信息系统架构设计理论与实践-02-信息系统架构

文章目录 1. 概述1.1 信息系统架构&#xff08;ISA&#xff09;1.2 架构风格 2. 信息系统架构分类2.1 信息系统物理结构2.1.1 集中式结构2.1.2 分布式结构 2.2 信息系统的逻辑结构1&#xff09;横向综合2&#xff09;纵向综合3&#xff09;纵横综合 3. 信息系统架构的一般原理4…

Android使用ANativeWindow更新surfaceView内容最简Demo

SurfaceView简介 SurfaceView对比View的区别 安卓的普通VIew,都依赖于当前Activity的Window的surface&#xff0c;这个surface用于承载view树从底到顶绘制出来的所有内容&#xff0c;因此任何一个view需要更新时&#xff0c;都需要把所有view中底到顶进行更新&#xff0c;即使使…

解决:Linux上SVN 1.12版本以上无法直接存储明文密码

问题&#xff1a;今天在Linux机器上安装了SVN&#xff0c;作为客户端使用&#xff0c;首次执行SVN相关操作&#xff0c;输入账号密码信息后&#xff0c;后面再执行SVN相关操作&#xff08;比如"svn update"&#xff09;还是每次都需要输入密码。 回想以前在首次输入…

Python进阶(4)--正则表达式

正则表达式 在Python中&#xff0c;正则表达式&#xff08;Regular Expression&#xff0c;简称Regex&#xff09;是一种强大的文本处理工具&#xff0c;它允许你使用一种特殊的语法来匹配、查找、替换字符串中的文本。 在这之前&#xff0c;还记得之前我们是通过什么方法分割…

[论文笔记] pai-megatron-patch Qwen2-CT 长文本rope改yarn

更改: # Copyright (c) 2024 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License a…

【系统架构设计】数据库系统(二)

数据库系统&#xff08;二&#xff09; 数据库模式与范式数据库设计数据库设计的方法数据库设计的基本步骤 事务管理并发控制故障和恢复 备份与恢复分布式数据库系统数据仓库数据挖掘NoSQL大数据 数据库模式与范式 数据库设计 数据库设计的方法 目前已有的数据库设计方法可分…

element UI :el-table横向列内容超出宽度,滚动条不显示问题

是否能解决你问题的前提 **看到这篇文章的解决问题的方案之前&#xff0c;请先回忆你是否在项目中的全局样式或者私有组件中去单独设置过滚动条样式。如果有 请继续往下看&#xff1a;**单独设置过滚动条样式代码实例&#xff1a; ::-webkit-scrollbar {/*滚动条整体样式*/wi…

layui 让table里的下拉框不被遮挡

记录&#xff1a;layui 让table里的下拉框不被遮挡 /* 这个是让table里的下拉框不被遮挡 */ .goods_table .layui-select-title,.goods_table .layui-select-title input{line-height: 28px;height: 28px; }.goods_table .layui-table-cell {overflow: visible !important; }.…

【Django】网上蛋糕项目商城-注册,登录,修改用户信息,退出功能

概念 通过以上多篇文章的讲解&#xff0c;对该项目的功能已经实现了很多&#xff0c;本文将对该项目的用户注册&#xff0c;登录&#xff0c;修改用户信息&#xff0c;以及退出等功能的实现。 注册功能实现 点击head.html头部页面的注册按钮&#xff0c;触发超链接跳转至use…

操作系统发展简史(Unix/Linux 篇 + DOS/Windows 篇)+ Mac 与 Microsoft 之风云争霸

操作系统发展简史&#xff08;Unix/Linux 篇&#xff09; 说到操作系统&#xff0c;大家都不会陌生。我们天天都在接触操作系统 —— 用台式机或笔记本电脑&#xff0c;使用的是 windows 和 macOS 系统&#xff1b;用手机、平板电脑&#xff0c;则是 android&#xff08;安卓&…

来聊聊去中心化Redis集群节点如何完成通信

写在文章开头 今天我们来聊点有意思的&#xff0c;关于redis中集群间通信的设计与实现&#xff0c;本文将从源码的角度分析redis集群节点如何利用Gossip协议完成节点间的通信与传播&#xff0c;希望对你有帮助。 Hi&#xff0c;我是 sharkChili &#xff0c;是个不断在硬核技术…

MAVSKD-Java开源库mavsdk_server库macOS平台编译

1.下载源码 2.使用IDEA打开,进行mavsdk_server目录,使用gradle进行编译 3.开始编译时会自动下载依赖 4.下载完成后,会自动编译 5.编译成功 6.成功生成AAR文件

2024算力基础设施安全架构设计与思考(免费下载)

算网安全体系是将数据中心集群、算力枢纽、一体化大数据中心三个层级的安全需求进行工程化解耦&#xff0c;从国家安全角度统筹设计&#xff0c;通过安全 服务化方式&#xff0c;依托威胁情报和指挥协同通道将三层四级安全体系串联贯通&#xff0c;达成一体化大数据安全目标。 …

文件IO(Ubuntu)

文件IO 目的 将数据写入文件中 与标准IO的区别 &#xff08;为什么要学习文件IO&#xff09; 标准IO只能操作普通文件和特殊的管道文件 文件IO能操作几乎所有的的文件 缓存区的目的 标准IO有缓存区 文件IO没有缓存区 根据右图描述 标准IO 文件IO buffer缓存区 有缓存区…

数据库管理的艺术(MySQL):DDL、DML、DQL、DCL及TPL的实战应用(上:数据定义与控制)

文章目录 DDL数据定义语言1、创建数据库2、创建表3、修改表结构4、删除5、数据类型 列的约束主键约束&#xff08;primary key&#xff09;唯一约束&#xff08;unique key&#xff09;非空约束检查约束&#xff08;check&#xff09;外键约束&#xff08;foreign key&#xff…

水域救援装备的详细简介_鼎跃安全

水域救援行动需要救援人员配备全面、专业的装备&#xff0c;以应对各种复杂的水域环境和救援任务。水域救援套装应运而生&#xff0c;它集合了水域救援所需的各类关键装备&#xff0c;为救援人员提供全方位的保护和辅助&#xff0c;确保数援行动的高效与安全。 水域救援头盔&am…

S参数入门

一、说明 S参数全称为散射参数&#xff0c;主要用来作为描述线性无源互联结构的一种行为模型&#xff0c;来源于网络分析方法。网络分析法是一种频域方法&#xff0c;在一组离散的频率点上&#xff0c;通过在输入和输出端口得到的参量完全描述线性时不变系统&#xff08;定义参…

PyTorch 深度学习实践-循环神经网络基础篇

视频指路 参考博客笔记 参考笔记二 文章目录 上课笔记基于RNNCell实现总代码 基于RNN实现总代码 含嵌入层的RNN网络嵌入层的作用含嵌入层的RNN网络架构总代码 其他RNN扩展基本注意力机制自注意力机制&#xff08;Self-Attention&#xff09;自注意力计算多头注意力机制&#xf…

redis笔记和测试

redis是用c语言写的,放不频繁更新的数据&#xff08;用户数据。课程数据&#xff09; Redis 中&#xff0c;"穿透"通常指的是缓存穿透&#xff08;Cache Penetration&#xff09;问题&#xff0c;这是指一种恶意或非法请求直接绕过缓存层&#xff0c;直接访问数据库或…

Nginx(详解)

1. 什么是Nginx&#xff1f; Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件&#xff08;IMAP/POP3&#xff09;代理服务器&#xff0c;在BSD-like 协议下发行。其特点是占有内存少&#xff0c;并发能力强&#xff0c;事实上nginx的并发能力在同类型的网页服务器中表…