目录
一、模型性能评估
1、数据预测评估
2、概率预测评估
二、模型参数优化
1、训练集、验证集、测试集的引入
2、k折线交叉验证
2、网格搜索
一、模型性能评估
1、数据预测评估
### 数据预测评估 #### 加载包,不存在就进行在线下载后加载if(!require(mlbench)) install.packages("mlbench")library(mlbench)data("BostonHousing")# 数据分区library(caret)library(ggplot2)library(lattice)index <- createDataPartition(BostonHousing$medv,p = 0.75,list = FALSE)train <- BostonHousing[index,]test <- BostonHousing[-index,]# 利用训练集构建模型,并对测试集进行预测set.seed(1234)fit <- lm(medv ~ .,data = train)pred <- predict(fit,newdata = test)# 自定义函数计算数值预测模型的评估指标numericIndex <- function(obs,pred){# 计算平均绝对误差MAEMAE <- mean(abs(obs-pred))# 计算均方误差MSEMSE <- mean((obs-pred)^2)# 计算均方根误差RMSERMSE <- sqrt(mean((obs-pred)^2))# 计算归一化均方误差NMSE <- sum((obs-pred)^2)/(sum((obs-mean(obs))^2))# 计算判定系数RsquaredRsqured <- cor(pred,obs)^2# 返回向量形式return(c('MAE' = MAE,'MSE' = MSE,'RMSE' = RMSE,'NMSE' = NMSE,'Rsqured' = Rsqured))}# 计算各指标度量值numericIndex(test$medv,pred)
# 利用caret包library(caret)postResample(pred,test$medv)
2、概率预测评估
### 混淆矩阵 #### install.packages("DAAG")library(DAAG)data(anesthetic)anes1=glm(factor(nomove)~conc,family=binomial(link='logit'),data=anesthetic)# 对模型做出预测结果pre=predict(anes1,type='response') # 得到的是样本为1类别时的预测概率值# 以0.5作为分界点result <- ifelse(pre>0.5,1,0)# 构建混淆矩阵confusion<-table(actual=anesthetic$nomove,predict=result)confusion# 计算各指标(1为正样本,0为负样本)(TP <- confusion[4])(TN <- confusion[1])(FP <- confusion[3])(FN <- confusion[2])(Accuracy <- (sum(TN) + sum(TP))/sum(confusion)) #准确率(Accuracy <- (TN + TP)/sum(confusion)) #准确率(Precision <- TP/(TP+FP)) # 精度(Recall <- TP/(TP+FN)) # 灵敏性/召回率(F1 <- 2*TP/(2*TP+FP+FN)) # F1-score(FPR <- FP/(TN+FP)) #假正率
# 使用confusionMatrix函数library(caret)confusionMatrix(data = factor(result), # 预测结果reference = factor(anesthetic$nomove), # 实际结果positive = '1', # 指定类别1为正样本mode = "prec_recall") # 设置为精度和查全率模式
### ROC曲线 #### 构建结果数据集result <- data.frame(pre_prob = pre,true_label = anesthetic$nomove)result <- result[order(result$pre_prob,decreasing = T),] # 按照预测概率值进行降序排序result$cumsum <- cumsum(rep(1,nrow(result))) # 统计累计样本数量result$poscumsum <- cumsum(result$true_label) # 统计累计正样本数量result$tpr <- round(result$poscumsum/sum(result$true_label==1),3) # 计算真正率result$fpr <- round((result$cumsum-result$poscumsum)/sum(result$true_label==0),3) # 计算假正率result$lift <- round((result$poscumsum/result$cumsum)/(sum(result$true_label==1)/nrow(result)),2) # 计算提升度head(result)tail(result)# 画出roc曲线library(ggplot2)if(!require(ROCR)) install.packages("ROCR")library(ROCR)ggplot(result) +geom_line(aes(x = result$fpr, y = result$tpr),color = "red1",size = 1.2) +geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1), color = "grey", lty = 2,size = 1.2) +annotate("text", x = 0.5, y = 1.05,label=paste('AUC:',round(ROCR::performance(prediction(result$pre_prob, result$true_label),'auc')@y.values[[1]],3)),size=6, alpha=0.8) +scale_x_continuous(breaks=seq(0,1,.2))+scale_y_continuous(breaks=seq(0,1,.2))+xlab("False Postive Rate")+ylab("True Postive Rate")+ggtitle(label="ROC - Chart")+theme_bw()+theme(plot.title=element_text(colour="gray24",size=12,face="bold"),plot.background = element_rect(fill = "gray90"),axis.title=element_text(size=10),axis.text=element_text(colour="gray35"))
# 利用ROCR包绘制roc曲线library(ROCR)pred1 <- prediction(pre,anesthetic$nomove)# 设置参数,横轴为假正率fpr,纵轴为真正率tprperf <- performance(pred1,'tpr','fpr')# 绘制ROC曲线plot(perf,main = "利用ROCR包绘制ROC曲线")
# 计算AUC值auc.adj <- performance(pred1,'auc')auc <- auc.adj@y.values[[1]]auc# 画出KS曲线ggplot(result) +geom_line(aes((1:nrow(result))/nrow(result),result$tpr),colour = "red2",size = 1.2) +geom_line(aes((1:nrow(result))/nrow(result),result$fpr),colour = "blue3",size = 1.2) +annotate("text", x = 0.5, y = 1.05, label=paste("KS=", round(which.max(result$tpr-result$fpr)/nrow(result), 4),"at Pop=", round(max(result$tpr-result$fpr), 4)), size=6, alpha=0.8)+scale_x_continuous(breaks=seq(0,1,.2))+scale_y_continuous(breaks=seq(0,1,.2))+xlab("Total Population Rate")+ylab("TP/FP Rate")+ggtitle(label="KS - Chart")+theme_bw()+theme(plot.title=element_text(colour="gray24",size=12,face="bold"),plot.background = element_rect(fill = "gray90"),axis.title=element_text(size=10),axis.text=element_text(colour="gray35"))
# 画累积提升图ggplot(result) +geom_line(aes(x = (1:nrow(result))/nrow(result), y = result$lift),color = "red3",size = 1.2) +scale_x_continuous(breaks=seq(0,1,.2))+xlab("Total Population Rate")+ylab("Lift value")+ggtitle(label="LIFT - Chart")+theme_bw()+theme(plot.title=element_text(colour="gray24",size=12,face="bold"),plot.background = element_rect(fill = "gray90"),axis.title=element_text(size=10),axis.text=element_text(colour="gray35"))
# 读入封装好的R代码source('自定义绘制各种曲线函数.R')# 加载ROCR.simple数据集library(ROCR)data(ROCR.simple)# 绘制各种曲线pc <- plotCurve(pre_prob=ROCR.simple$predictions,true_label=ROCR.simple$labels)# 查看各种曲线library(gridExtra)grid.arrange(pc$roc_curve,pc$ks_curve,pc$lift_curve,ncol = 3)
二、模型参数优化
1、训练集、验证集、测试集的引入
### 训练集、验证集、测试集的引入 ####注意:以下代码需要安装tensorflow和keras包才能运行devtools::install_github("rstudio/tensorflow")library(tensorflow)install_tensorflow()library(keras)# 导入数据集library(keras)c(c(x_train,y_train),c(x_test,y_test )) %<-% dataset_mnist()# 查看数据集的维度cat('x_train shape:',dim(x_train))cat('y_train shape:',dim(y_train))cat('x_test shape:',dim(x_test))cat('y_test shape:',dim(y_test))# 对数字图像进行可视化par(mfrow=c(3,3))for(i in 1:9){plot(as.raster(x_train[i,,],max = 255))title(main = paste0('数字标签为:',y_train[i]))}
par(mfrow = c(1,1))
# 数据预处理x_train <- array_reshape(x_train,c(nrow(x_train),784))x_test <- array_reshape(x_test,c(nrow(x_test),784))x_train <- x_train / 255x_test <- x_test / 255y_train <- to_categorical(y_train,10)y_test <- to_categorical(y_test,10)# 构建网络结构model <- keras_model_sequential()model %>%layer_dense(units = 256,activation = 'relu',input_shape = c(784)) %>%layer_dense(units = 128,activation = 'relu') %>%layer_dense(units = 10,activation = 'softmax')summary(model)
> # 编译和训练深度学习模型> model %>%+ compile(loss = 'categorical_crossentropy',+ optimizer = optimizer_rmsprop(),+ metrics = c('accuracy'))> history <- model %>% fit(+ x_train,y_train,+ epochs = 10,batch_size = 128,+ validation_split = 0.2+ )
Epoch 1/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 2:25 389ms/step - accuracy: 0.0547 - loss: 2.3528
19/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.5331 - loss: 1.5280
39/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.6426 - loss: 1.2044
60/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.6974 - loss: 1.0292
80/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.7294 - loss: 0.9236
99/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.7511 - loss: 0.8515
119/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.7683 - loss: 0.7934
140/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.7827 - loss: 0.7446
160/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.7938 - loss: 0.7066
179/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8028 - loss: 0.6759
201/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8117 - loss: 0.6454
220/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8185 - loss: 0.6224
240/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8247 - loss: 0.6009
261/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8305 - loss: 0.5809
282/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8357 - loss: 0.5630
303/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8404 - loss: 0.5468
323/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8445 - loss: 0.5327
344/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8484 - loss: 0.5191
363/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.8517 - loss: 0.5077
375/375 ━━━━━━━━━━━━━━━━━━━━ 2s 4ms/step - accuracy: 0.8538 - loss: 0.5004 - val_accuracy: 0.9590 - val_loss: 0.1390
Epoch 2/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 8s 22ms/step - accuracy: 0.9688 - loss: 0.1577
19/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9593 - loss: 0.1446
37/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9586 - loss: 0.1431
55/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9581 - loss: 0.1421
72/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9581 - loss: 0.1414
92/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9581 - loss: 0.1412
111/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9580 - loss: 0.1407
130/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9582 - loss: 0.1397
150/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9585 - loss: 0.1387
171/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9587 - loss: 0.1377
191/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9589 - loss: 0.1367
211/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9592 - loss: 0.1358
230/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9594 - loss: 0.1349
250/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9596 - loss: 0.1340
269/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9598 - loss: 0.1332
291/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9601 - loss: 0.1322
311/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9603 - loss: 0.1314
331/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9605 - loss: 0.1307
352/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9607 - loss: 0.1300
372/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9609 - loss: 0.1293
375/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9610 - loss: 0.1292 - val_accuracy: 0.9680 - val_loss: 0.1072
Epoch 3/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 8s 23ms/step - accuracy: 0.9453 - loss: 0.1397
21/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9727 - loss: 0.0838
41/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9750 - loss: 0.0806
59/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9759 - loss: 0.0788
78/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9763 - loss: 0.0776
99/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9764 - loss: 0.0771
119/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9765 - loss: 0.0770
139/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9764 - loss: 0.0773
161/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9764 - loss: 0.0776
183/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9763 - loss: 0.0778
205/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9763 - loss: 0.0778
224/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9763 - loss: 0.0778
244/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9764 - loss: 0.0777
264/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9764 - loss: 0.0777
282/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9764 - loss: 0.0776
301/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9765 - loss: 0.0775
319/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9765 - loss: 0.0774
337/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9765 - loss: 0.0773
356/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9765 - loss: 0.0773
375/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9766 - loss: 0.0772 - val_accuracy: 0.9735 - val_loss: 0.0908
Epoch 4/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 8s 24ms/step - accuracy: 0.9766 - loss: 0.0345
22/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9827 - loss: 0.0557
42/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9834 - loss: 0.0553
63/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9832 - loss: 0.0555
85/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9830 - loss: 0.0560
105/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9830 - loss: 0.0561
125/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9830 - loss: 0.0561
146/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9830 - loss: 0.0562
167/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9829 - loss: 0.0563
186/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9829 - loss: 0.0564
204/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9829 - loss: 0.0564
221/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9828 - loss: 0.0565
241/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9828 - loss: 0.0565
261/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9828 - loss: 0.0565
281/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9828 - loss: 0.0564
301/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9828 - loss: 0.0564
320/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9828 - loss: 0.0563
339/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9828 - loss: 0.0562
357/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9828 - loss: 0.0562
375/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9828 - loss: 0.0562 - val_accuracy: 0.9747 - val_loss: 0.0845
Epoch 5/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 7s 21ms/step - accuracy: 1.0000 - loss: 0.0048
21/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9920 - loss: 0.0268
41/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9910 - loss: 0.0300
62/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9907 - loss: 0.0303
82/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9904 - loss: 0.0309
102/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9900 - loss: 0.0317
122/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9897 - loss: 0.0325
142/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9895 - loss: 0.0333
163/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9893 - loss: 0.0339
183/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9892 - loss: 0.0344
203/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9890 - loss: 0.0350
223/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9889 - loss: 0.0354
244/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9888 - loss: 0.0359
262/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9887 - loss: 0.0362
280/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9886 - loss: 0.0366
300/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9885 - loss: 0.0369
321/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9884 - loss: 0.0372
341/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9883 - loss: 0.0375
360/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9883 - loss: 0.0377
375/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9882 - loss: 0.0379 - val_accuracy: 0.9728 - val_loss: 0.0921
Epoch 6/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 9s 25ms/step - accuracy: 1.0000 - loss: 0.0120
20/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9924 - loss: 0.0235
39/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9915 - loss: 0.0258
58/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9911 - loss: 0.0267
78/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9910 - loss: 0.0270
99/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9908 - loss: 0.0273
118/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9907 - loss: 0.0277
138/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9907 - loss: 0.0280
157/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9906 - loss: 0.0284
175/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9905 - loss: 0.0288
194/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9904 - loss: 0.0291
213/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9904 - loss: 0.0294
233/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9903 - loss: 0.0296
254/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9903 - loss: 0.0298
275/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9903 - loss: 0.0300
296/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9903 - loss: 0.0302
317/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9902 - loss: 0.0303
337/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9902 - loss: 0.0305
358/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9902 - loss: 0.0306
375/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9902 - loss: 0.0307 - val_accuracy: 0.9768 - val_loss: 0.0857
Epoch 7/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 9s 25ms/step - accuracy: 1.0000 - loss: 0.0091
20/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9955 - loss: 0.0147
39/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9948 - loss: 0.0171
58/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9946 - loss: 0.0183
77/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9945 - loss: 0.0192
95/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9944 - loss: 0.0196
114/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9944 - loss: 0.0197
133/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9943 - loss: 0.0199
154/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9943 - loss: 0.0201
175/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9941 - loss: 0.0203
195/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9940 - loss: 0.0206
216/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9939 - loss: 0.0208
237/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9938 - loss: 0.0211
258/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9937 - loss: 0.0213
278/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9936 - loss: 0.0215
299/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9935 - loss: 0.0218
319/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9934 - loss: 0.0220
339/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9933 - loss: 0.0222
359/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9933 - loss: 0.0223
375/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9932 - loss: 0.0225 - val_accuracy: 0.9763 - val_loss: 0.0927
Epoch 8/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 8s 22ms/step - accuracy: 1.0000 - loss: 0.0030
21/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9955 - loss: 0.0162
42/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9952 - loss: 0.0177
62/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9950 - loss: 0.0180
83/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9950 - loss: 0.0181
104/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9950 - loss: 0.0179
125/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9949 - loss: 0.0180
147/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9948 - loss: 0.0181
168/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9947 - loss: 0.0181
188/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9946 - loss: 0.0181
209/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9945 - loss: 0.0181
229/375 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.9945 - loss: 0.0182
247/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9945 - loss: 0.0182
265/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9944 - loss: 0.0182
284/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9944 - loss: 0.0182
303/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9944 - loss: 0.0183
322/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9944 - loss: 0.0183
341/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9943 - loss: 0.0183
358/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9943 - loss: 0.0184
375/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9943 - loss: 0.0184 - val_accuracy: 0.9790 - val_loss: 0.0842
Epoch 9/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 8s 24ms/step - accuracy: 1.0000 - loss: 0.0019
20/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9972 - loss: 0.0090
40/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9971 - loss: 0.0098
60/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9970 - loss: 0.0100
79/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9970 - loss: 0.0102
100/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9969 - loss: 0.0103
120/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9968 - loss: 0.0106
140/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9968 - loss: 0.0108
161/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9967 - loss: 0.0110
181/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9967 - loss: 0.0111
201/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9967 - loss: 0.0113
222/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9967 - loss: 0.0114
242/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9966 - loss: 0.0116
260/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9965 - loss: 0.0117
277/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9965 - loss: 0.0118
298/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9964 - loss: 0.0119
319/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9964 - loss: 0.0121
340/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9963 - loss: 0.0122
360/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9963 - loss: 0.0124
375/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9962 - loss: 0.0125 - val_accuracy: 0.9783 - val_loss: 0.0885
Epoch 10/10
1/375 ━━━━━━━━━━━━━━━━━━━━ 30s 82ms/step - accuracy: 1.0000 - loss: 0.0014
20/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9981 - loss: 0.0071
40/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9973 - loss: 0.0084
59/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9970 - loss: 0.0088
78/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9970 - loss: 0.0090
98/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9969 - loss: 0.0093
118/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9969 - loss: 0.0094
137/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9969 - loss: 0.0096
156/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9968 - loss: 0.0098
176/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9967 - loss: 0.0100
195/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9967 - loss: 0.0101
215/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9966 - loss: 0.0102
236/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9966 - loss: 0.0103
256/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9966 - loss: 0.0105
276/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9965 - loss: 0.0106
296/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9965 - loss: 0.0106
316/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9965 - loss: 0.0107
335/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9965 - loss: 0.0107
354/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9965 - loss: 0.0107
374/375 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9965 - loss: 0.0108
375/375 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9965 - loss: 0.0108 - val_accuracy: 0.9798 - val_loss: 0.0888
plot(history)
# 评估模型效果DNN_score <- model %>% evaluate(x_test,y_test)DNN_score$acc # 查看测试集的准确率
2、k折线交叉验证
### 10折交叉验证 #### 导入car数据集car <- read.table("../data/car.data",sep = ",")# 对变量重命名colnames(car) <- c("buy","main","doors","capacity","lug_boot","safety","accept")# 手动构建10折交叉验证#下面构造10折下标集library(caret)ind<-createFolds(car$accept,k=10,list=FALSE,returnTrain=FALSE)# 下面再做10折交叉验证,这里仅给出训练集和测试集的分类平均误判率。E0=rep(0,10);E1=E0car$accept<-as.factor(car$accept)library(C50)for(i in 1:10){n0=nrow(car)-nrow(car[ind==i,]);n1=nrow(car[ind==i,])a=C5.0(accept~.,car[!ind==i,])E0[i]=sum(car[!ind==i,'accept']!=predict(a,car[!ind==i,]))/n0E1[i]=sum(car[ind==i,'accept']!=predict(a,car[ind==i,]))/n1}(1-mean(E0));(1-mean(E1))
# 利用caret包中的trainControl函数完成交叉验证library(caret)library(ROCR)control <- trainControl(method="repeatedcv",number=10,repeats=3)model <- train(accept~.,data=car,method="rpart",trControl=control)model
plot(model)
2、网格搜索
### 网格搜索 ###### 网格搜索 ####install.packages("gbm")set.seed(1234)library(caret)library(gbm)fitControl <- trainControl(method = 'repeatedcv',number = 10,repeats = 5)# 设置网格搜索的参数池gbmGrid <- expand.grid(interaction.depth = c(3,5,9),n.trees = (1:20)*5,shrinkage = 0.1,n.minobsinnode = 20)nrow(gbmGrid)
# 训练模型,找出最优参数组合gbmfit <- train(accept ~ .,data = car,method = 'gbm',trControl = fitControl,tuneGrid = gbmGrid,metric = 'Accuracy')gbmfit$bestTune # 查看模型最优的参数组合
plot(gbmfit)