高数知识补充----矩阵、行列式、数学符号

矩阵计算

参考链接:矩阵如何运算?——线性代数_矩阵计算-CSDN博客

行列式计算

参考链接:实用的行列式计算方法 —— 线性代数(det)_det线性代数-CSDN博客

参考链接:行列式的计算方法(含四种,看完就会!)-CSDN博客

一、对角线法

▍以三阶行列式为例:

①将第一、二列平移到行列式右侧
②如图做出六条斜对角线
③对角线上的元素相乘红色相加的和 减去 蓝色相加的和

D3​=

对角线法也是三阶行列式计算使用最广泛的方法

 对角线法适用于二、三阶行列式,对于更高阶的行列式暂时未找到规律

二、代数余子式法

三、等价转化法

四、逆序数法

四种行列式的计算方法:

▍其中对角线法,是使用最简单、最广泛的方法

▍代数余子式法和等价转化法,在特定情况下能极大程度上简便运算,但需要读者对行列式进行灵活地观察

▍逆序数法,是一种更加基础的方法,使用起来比较复杂

数学符号及读法大全 & 数学运算符号及含义

参考链接:【高数】数学符号及读法大全and数学运算符号及含义_高数符号大全及意义-CSDN博客

数学符号及读法大全,并解释了运算符号含义。

大写

小写

英文注音

国际音标

中文注音

Α

α

alpha

alfa

阿耳法

Β

β

beta

beta

贝塔

Γ

γ

gamma

gamma

伽马

Δ

δ

deta

delta

德耳塔

Ε

ε

epsilon

epsilon

艾普西隆

Ζ

ζ

zeta

zeta

截塔

Η

η

eta

eta

艾塔

Θ

θ

theta

θita

西塔

Ι

ι

iota

iota

约塔

Κ

κ

kappa

kappa

卡帕

λ

lambda

lambda

兰姆达

Μ

μ

mu

miu

Ν

ν

nu

niu

Ξ

ξ

xi

ksi

可塞

Ο

ο

omicron

omikron

奥密可戎

π

pi

pai

Ρ

ρ

rho

rou

σ

sigma

sigma

西格马

Τ

τ

tau

tau

Υ

υ

upsilon

jupsilon

衣普西隆

Φ

φ

phi

fai

Χ

χ

chi

khai

Ψ

ψ

psi

psai

普西

Ω

ω

omega

omiga

欧米噶

符号

含义

i

-1的平方根

f(x)

函数f在自变量x处的值

sin(x)

在自变量x处的正弦函数值

exp(x)

在自变量x处的指数函数值,常被写作ex

a^x

a的x次方;有理数x由反函数定义

ln x

exp x 的反函数

ax

同 a^x

logba

以b为底a的对数;blogba = a

cos x

在自变量x处余弦函数的值

tan x

其值等于 sin x/cos x

cot x

余切函数的值或 cos x/sin x

sec x

正割含数的值,其值等于 1/cos x

csc x

余割函数的值,其值等于 1/sin x

asin x

y,正弦函数反函数在x处的值,即 x = sin y

acos x

y,余弦函数反函数在x处的值,即 x = cos y

atan x

y,正切函数反函数在x处的值,即 x = tan y

acot x

y,余切函数反函数在x处的值,即 x = cot y

asec x

y,正割函数反函数在x处的值,即 x = sec y

acsc x

y,余割函数反函数在x处的值,即 x = csc y

θ

角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时

i, j, k

分别表示x、y、z方向上的单位向量

(a, b, c)

以a、b、c为元素的向量

(a, b)

以a、b为元素的向量

(a, b)

a、b向量的点积

a•b

a、b向量的点积

(a•b)

a、b向量的点积

|v|

向量v的模

|x|

数x的绝对值

Σ

表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100 的和可以表示成:。这表示 1 + 2 + … + n

M

表示一个矩阵或数列或其它

|v>

列向量,即元素被写成列或可被看成k×1阶矩阵的向量

<v|

被写成行或可被看成从1×k阶矩阵的向量

dx

变量x的一个无穷小变化,dy, dz, dr等类似

ds

长度的微小变化

ρ

变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离

r

变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离

|M|

矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积

||M||

矩阵M的行列式的值,为一个面积、体积或超体积

det M

M的行列式

M-1

矩阵M的逆矩阵

v×w

向量v和w的向量积或叉积

θvw

向量v和w之间的夹角

A•B×C

标量三重积,以A、B、C为列的矩阵的行列式

uw

在向量w方向上的单位向量,即 w/|w|

df

函数f的微小变化,足够小以至适合于所有相关函数的线性近似

df/dx

f关于x的导数,同时也是f的线性近似斜率

f '

函数f关于相应自变量的导数,自变量通常为x

∂f/∂x

y、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df 与dq的比值。任何可能导致变量混淆的地方都应明确地表述

(∂f/∂x)|r,z

保持r和z不变时,f关于x的偏导数

grad f

元素分别为f关于x、y、z偏导数 [(∂f/∂x), (∂f/∂y), (∂f/∂z)] 或 (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k; 的向量场,称为f的梯度

向量算子(∂/∂x)i + (∂/∂x)j + (∂/∂x)k, 读作 "del"

∇f

f的梯度;它和 uw 的点积为f在w方向上的方向导数

∇•w

向量场w的散度,为向量算子∇ 同向量 w的点积, 或 (∂wx /∂x) + (∂wy /∂y) + (∂wz /∂z)

curl w

向量算子 ∇ 同向量 w 的叉积

∇×w

w的旋度,其元素为[(∂fz /∂y) - (∂fy /∂z), (∂fx /∂z) - (∂fz /∂x), (∂fy /∂x) - (∂fx /∂y)]

∇•∇

拉普拉斯微分算子:(∂2/∂x2) + (∂/∂y2) + (∂/∂z2)

f "(x)

f关于x的二阶导数,f '(x)的导数

d2f/dx2

f关于x的二阶导数

f(2)(x)

同样也是f关于x的二阶导数

f(k)(x)

f关于x的第k阶导数,f(k-1) (x)的导数

T

曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt|

ds

沿曲线方向距离的导数

κ

曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|

N

dT/ds投影方向单位向量,垂直于T

B

平面T和N的单位法向量,即曲率的平面

τ

曲线的扭率:|dB/ds|

g

重力常数

F

力学中力的标准符号

k

弹簧的弹簧常数

pi

第i个物体的动量

H

物理系统的哈密尔敦函数,即位置和动量表示的能量

{Q, H}

Q, H的泊松括号

以一个关于x的函数的形式表达的f(x)的积分

函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积

L(d)

相等子区间大小为d,每个子区间左端点的值为 f的黎曼和

R(d)

相等子区间大小为d,每个子区间右端点的值为 f的黎曼和

M(d)

相等子区间大小为d,每个子区间上的最大值为 f的黎曼和

m(d)

相等子区间大小为d,每个子区间上的最小值为 f的黎曼和

公式输入符号  :

+:           plus(positive正的)
-:         minus(negative负的)
*:         multiplied by
÷:        divided by
=:          be equal to
≈:          be approximately equal to
():          round brackets(parenthess)
[]:          square brackets
{}:          braces
∵:          because
∴:          therefore
≤:          less than or equal to
≥:          greater than or equal to
∞:          infinity
LOGnX:    logx to the base n
xn:          the nth power of x
f(x):          the function of x
dx:          diffrencial of x
x+y:        x plus y
(a+b):      bracket a plus b bracket closed
a=b:        a equals b
a≠b:      a isn't equal to b
a>b :       a is greater than b
a>>b:      a is much greater than b
a≥b:         a is greater than or equal to b
x→∞:    approches infinity
x2:          x  square
x3:          x cube
√ ̄x:      the square root of x
3√ ̄x:    the cube root of x
3‰:    three peimill
n∑i=1xi:  the summation of x where x goes from 1to n
n∏i=1xi:  the product of x sub i where igoes from 1to n
∫ab:         integral betweens a and b

数学符号(理科符号)——运算符号 : 

1.基本符号:+ - × ÷(/)  
2.分数号:/  
3.正负号:±  
4.相似全等:∽ ≌  
5.因为所以:∵ ∴  
6.判断类:= ≠ < ≮(不小于) > ≯(不大于)  
7.集合类:∈(属于) ∪(并集) ∩(交集)  
8.求和符号:∑  
9.n次方符号:¹(一次方) ²(平方) ³(立方) ⁴(4次方) ⁿ(n次方)  
10.下角标:₁ ₂ ₃ ₄  
(如:A₁B₂C₃D₄ 效果如何?)  
11.或与非的"非":¬  
12.导数符号(备注符号):′ 〃  
13.度:° ℃  
14.任意:∀  ;“存在”:∃
15.推出号:⇒  
16.等价号:⇔  
17.包含被包含:⊆ ⊇ ⊂ ⊃  
18.积分:∫ ∬  
19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←  
20.绝对值:|  
21.弧:⌒  
22.圆:⊙ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/47387.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用ETLCloud实现MySQL数据库与StarRocks数据库同步

在现代数据架构中&#xff0c;数据同步是保证数据一致性和分析准确性的关键步骤之一。本文将介绍如何利用ETLCloud技术实现MySQL数据库与StarRocks数仓数据库的高效数据同步&#xff0c;以及其在数据管理和分析中的重要性。 数据同步的重要性 在数据驱动的时代&#xff0c;企…

uniapp 解决scroll-view组件 refresher-triggered刷新无效

直接上代码 看代码注释 const isRefresh ref(false); //下拉刷新状态// 下拉刷新async function refresherpulling() {renderArr.value [];isRefresh.value true; // 先赋为true 调用完接口再设为falseawait reqData();isRefresh.value false; // 重置状态}下面是组件视图 …

OpenAI训练数据从哪里来、与苹果合作进展如何?“ChatGPT之母”最新回应

7月9日&#xff0c;美国约翰霍普金斯大学公布了对“ChatGPT之母”、OpenAI首席技术官米拉穆拉蒂&#xff08;Mira Murati&#xff09;的采访视频。这场采访时间是6月10日&#xff0c;访谈中&#xff0c;穆拉蒂不仅与主持人讨论了OpenAI与Apple的合作伙伴关系&#xff0c;还深入…

Apache Omid TSO 组件源码实现原理

Apache Omid TSO 组件实现原理 作用 独立进程&#xff0c;处理全局事务之间的并发冲突。 流程 TSOChannelHandler#channelRead -> AbstractRequestProcessor -> PersistenceProcessorHandler 总体流程 thread1TSOChannelHandler#channelReadAbstractRequestProcess…

智能边缘计算网关:实现工业自动化与数据处理的融合-天拓四方

随着物联网&#xff08;IoT&#xff09;技术的迅速发展和普及&#xff0c;越来越多的设备被连接到互联网上&#xff0c;产生了海量的数据。如何有效地处理和分析这些数据&#xff0c;同时确保数据的安全性和实时性&#xff0c;成为了摆在企业面前的一大挑战。智能边缘计算网关作…

广联达Linkworks ArchiveWebService XML实体注入漏洞复现

0x01 产品简介 广联达 LinkWorks(也称为 GlinkLink 或 GTP-LinkWorks)是广联达公司(Glodon)开发的一种BIM(建筑信息模型)协同平台。广联达是中国领先的数字建造技术提供商之一,专注于为建筑、工程和建筑设计行业提供数字化解决方案。 0x02 漏洞概述 广联达 LinkWorks…

在VScode中编译C程序

一&#xff0c;安装 VS Code 下载并安装VS code&#xff0c;安装简体中文和C/C插件。略。 二&#xff0c;配置gcc环境 下载并安装MinGW。添加环境变量。略。 在cmd中输入 gcc -v 能打印版本即可。 三&#xff0c;打开文件夹&#xff0c;创建工作区 1&#xff0c;打开文件夹…

数据库系统概论:数据库系统模式

数据库系统在我们的数字世界中扮演着至关重要的角色&#xff0c;无论是个人设备还是企业级应用&#xff0c;数据的有效管理和访问都是必不可少的。而数据库系统的模式结构是确保数据一致性和可访问性的关键组成部分。 数据库系统模式 基本概念 型和值 数据模型中有 型(type…

游戏中的敏感词算法初探

在游戏中起名和聊天需要服务器判断是否含有敏感词&#xff0c;从而拒绝或屏蔽敏感词显示&#xff0c;这里枚举一些常用的算法和实际效果。 1.字符串匹配算法 常用的有KMP&#xff0c;核心就是预处理出next数组&#xff0c;也就是失配信息&#xff0c;时间复杂度在O(mn) 。还有个…

微软研究人员为电子表格应用开发了专用人工智能LLM

微软的 Copilot 生成式人工智能助手现已成为该公司许多软件应用程序的一部分。其中包括 Excel 电子表格应用程序&#xff0c;用户可以在其中输入文本提示来帮助处理某些选项。微软的一组研究人员一直在研究一种新的人工智能大型语言模型&#xff0c;这种模型是专门为 Excel、Go…

Transformer系列专题(四)——Swintransformer

文章目录 九、SwinTransformer9.1 整体网络架构9.2 Transformer Blocks9.3 Patch Embedding&#xff08;将图像切割成小块&#xff08;Patch&#xff09;&#xff09;9.4 window_partition9.5 W-MSA&#xff08;Window Multi-head Self Attention&#xff09;9.6 window_revers…

Redis-应用

目录 应用 缓存雪崩、击穿、穿透和解决办法? 布隆过滤器是怎么工作的? 缓存的数据一致性怎么保证 Redis和Mysql消息一致性 业务一致性要求高怎么办? 数据库与缓存的一致性问题 数据库和缓存的一致性如何保证 如何保证本地缓存和分布式缓存的一致&#xff1f; 如果在…

【Pytorch】一文向您详细介绍 `tensor.max(1, keepdims=True)`

【&#x1f525;Pytorch】一文向您详细介绍 tensor.max(1, keepdimsTrue) 下滑即可查看博客内容 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff…

(一)原生js案例之图片轮播

原生js实现的两种播放效果 效果一 循环播放&#xff0c;单一的效果 代码实现 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-sc…

昇思学习打卡-20-生成式/GAN图像生成

文章目录 网络介绍生成器和判别器的博弈过程数据集可视化模型细节训练过程网络优缺点优点缺点 网络介绍 GAN通过设计生成模型和判别模型这两个模块&#xff0c;使其互相博弈学习产生了相当好的输出。 GAN模型的核心在于提出了通过对抗过程来估计生成模型这一全新框架。在这个…

今日安装了一下Eclipse,配置了SVN

Eclipse安装配置参考文章1&#xff1a; https://blog.csdn.net/maiya_yayaya/article/details/132208892 Eclipse配置SVN参考文章2&#xff1a; https://blog.csdn.net/zzh45828/article/details/106224375 Eclipse如何导入项目参考文章3&#xff1a; https://blog.csdn.n…

Linux上的系统服务——DNS、WEB、NFS 和 AutoFS 服务的详细配置步骤

现有主机 node01 和 node02&#xff0c;完成如下需求&#xff1a; 1、在 node01 主机上提供 DNS 和 WEB 服务 2、dns 服务提供本实验所有主机名解析 3、web服务提供 www.rhce.com 虚拟主机 4、该虚拟主机的documentroot目录在 /nfs/rhce 目录 5、该目录由 node02 主机提供的NFS…

RK3568笔记三十九:多个LED驱动开发测试(设备树)

若该文为原创文章&#xff0c;转载请注明原文出处。 通过设备树配置一个节点下两个子节点控制两个IO口&#xff0c;一个板载LED&#xff0c;一个外接LED。 一、介绍 通过学习设备树控制GPIO&#xff0c;发现有多种方式 一、直接通过寄存器控制 二、通过设备树&#xff0c;但…

C#调用非托管dll,并从dll中再调用C#中的方法

从Delphi DLL调用C#方法&#xff1a;一种高效的跨语言集成方案 在软件开发中&#xff0c;我们经常遇到需要集成不同语言编写的组件的情况。 例如&#xff0c;使用C#开发的现代应用程序可能需要调用一些用Delphi编写的老DLL。 如果直接在Delphi中实现某些功能存在困难&#xff…

基于STC89C52RC单片机的大棚温控系统(含文档、源码与proteus仿真,以及系统详细介绍)

本篇文章论述的是基于STC89C52RC单片机的大棚温控系统的详情介绍&#xff0c;如果对您有帮助的话&#xff0c;还请关注一下哦&#xff0c;如果有资源方面的需要可以联系我。 目录 摘要 原理图 仿真图 系统总体设计图 代码 系统论文 参考文献 资源下载 摘要 本文介绍的…