高数知识补充----矩阵、行列式、数学符号

矩阵计算

参考链接:矩阵如何运算?——线性代数_矩阵计算-CSDN博客

行列式计算

参考链接:实用的行列式计算方法 —— 线性代数(det)_det线性代数-CSDN博客

参考链接:行列式的计算方法(含四种,看完就会!)-CSDN博客

一、对角线法

▍以三阶行列式为例:

①将第一、二列平移到行列式右侧
②如图做出六条斜对角线
③对角线上的元素相乘红色相加的和 减去 蓝色相加的和

D3​=

对角线法也是三阶行列式计算使用最广泛的方法

 对角线法适用于二、三阶行列式,对于更高阶的行列式暂时未找到规律

二、代数余子式法

三、等价转化法

四、逆序数法

四种行列式的计算方法:

▍其中对角线法,是使用最简单、最广泛的方法

▍代数余子式法和等价转化法,在特定情况下能极大程度上简便运算,但需要读者对行列式进行灵活地观察

▍逆序数法,是一种更加基础的方法,使用起来比较复杂

数学符号及读法大全 & 数学运算符号及含义

参考链接:【高数】数学符号及读法大全and数学运算符号及含义_高数符号大全及意义-CSDN博客

数学符号及读法大全,并解释了运算符号含义。

大写

小写

英文注音

国际音标

中文注音

Α

α

alpha

alfa

阿耳法

Β

β

beta

beta

贝塔

Γ

γ

gamma

gamma

伽马

Δ

δ

deta

delta

德耳塔

Ε

ε

epsilon

epsilon

艾普西隆

Ζ

ζ

zeta

zeta

截塔

Η

η

eta

eta

艾塔

Θ

θ

theta

θita

西塔

Ι

ι

iota

iota

约塔

Κ

κ

kappa

kappa

卡帕

λ

lambda

lambda

兰姆达

Μ

μ

mu

miu

Ν

ν

nu

niu

Ξ

ξ

xi

ksi

可塞

Ο

ο

omicron

omikron

奥密可戎

π

pi

pai

Ρ

ρ

rho

rou

σ

sigma

sigma

西格马

Τ

τ

tau

tau

Υ

υ

upsilon

jupsilon

衣普西隆

Φ

φ

phi

fai

Χ

χ

chi

khai

Ψ

ψ

psi

psai

普西

Ω

ω

omega

omiga

欧米噶

符号

含义

i

-1的平方根

f(x)

函数f在自变量x处的值

sin(x)

在自变量x处的正弦函数值

exp(x)

在自变量x处的指数函数值,常被写作ex

a^x

a的x次方;有理数x由反函数定义

ln x

exp x 的反函数

ax

同 a^x

logba

以b为底a的对数;blogba = a

cos x

在自变量x处余弦函数的值

tan x

其值等于 sin x/cos x

cot x

余切函数的值或 cos x/sin x

sec x

正割含数的值,其值等于 1/cos x

csc x

余割函数的值,其值等于 1/sin x

asin x

y,正弦函数反函数在x处的值,即 x = sin y

acos x

y,余弦函数反函数在x处的值,即 x = cos y

atan x

y,正切函数反函数在x处的值,即 x = tan y

acot x

y,余切函数反函数在x处的值,即 x = cot y

asec x

y,正割函数反函数在x处的值,即 x = sec y

acsc x

y,余割函数反函数在x处的值,即 x = csc y

θ

角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时

i, j, k

分别表示x、y、z方向上的单位向量

(a, b, c)

以a、b、c为元素的向量

(a, b)

以a、b为元素的向量

(a, b)

a、b向量的点积

a•b

a、b向量的点积

(a•b)

a、b向量的点积

|v|

向量v的模

|x|

数x的绝对值

Σ

表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100 的和可以表示成:。这表示 1 + 2 + … + n

M

表示一个矩阵或数列或其它

|v>

列向量,即元素被写成列或可被看成k×1阶矩阵的向量

<v|

被写成行或可被看成从1×k阶矩阵的向量

dx

变量x的一个无穷小变化,dy, dz, dr等类似

ds

长度的微小变化

ρ

变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离

r

变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离

|M|

矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积

||M||

矩阵M的行列式的值,为一个面积、体积或超体积

det M

M的行列式

M-1

矩阵M的逆矩阵

v×w

向量v和w的向量积或叉积

θvw

向量v和w之间的夹角

A•B×C

标量三重积,以A、B、C为列的矩阵的行列式

uw

在向量w方向上的单位向量,即 w/|w|

df

函数f的微小变化,足够小以至适合于所有相关函数的线性近似

df/dx

f关于x的导数,同时也是f的线性近似斜率

f '

函数f关于相应自变量的导数,自变量通常为x

∂f/∂x

y、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df 与dq的比值。任何可能导致变量混淆的地方都应明确地表述

(∂f/∂x)|r,z

保持r和z不变时,f关于x的偏导数

grad f

元素分别为f关于x、y、z偏导数 [(∂f/∂x), (∂f/∂y), (∂f/∂z)] 或 (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k; 的向量场,称为f的梯度

向量算子(∂/∂x)i + (∂/∂x)j + (∂/∂x)k, 读作 "del"

∇f

f的梯度;它和 uw 的点积为f在w方向上的方向导数

∇•w

向量场w的散度,为向量算子∇ 同向量 w的点积, 或 (∂wx /∂x) + (∂wy /∂y) + (∂wz /∂z)

curl w

向量算子 ∇ 同向量 w 的叉积

∇×w

w的旋度,其元素为[(∂fz /∂y) - (∂fy /∂z), (∂fx /∂z) - (∂fz /∂x), (∂fy /∂x) - (∂fx /∂y)]

∇•∇

拉普拉斯微分算子:(∂2/∂x2) + (∂/∂y2) + (∂/∂z2)

f "(x)

f关于x的二阶导数,f '(x)的导数

d2f/dx2

f关于x的二阶导数

f(2)(x)

同样也是f关于x的二阶导数

f(k)(x)

f关于x的第k阶导数,f(k-1) (x)的导数

T

曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt|

ds

沿曲线方向距离的导数

κ

曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|

N

dT/ds投影方向单位向量,垂直于T

B

平面T和N的单位法向量,即曲率的平面

τ

曲线的扭率:|dB/ds|

g

重力常数

F

力学中力的标准符号

k

弹簧的弹簧常数

pi

第i个物体的动量

H

物理系统的哈密尔敦函数,即位置和动量表示的能量

{Q, H}

Q, H的泊松括号

以一个关于x的函数的形式表达的f(x)的积分

函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积

L(d)

相等子区间大小为d,每个子区间左端点的值为 f的黎曼和

R(d)

相等子区间大小为d,每个子区间右端点的值为 f的黎曼和

M(d)

相等子区间大小为d,每个子区间上的最大值为 f的黎曼和

m(d)

相等子区间大小为d,每个子区间上的最小值为 f的黎曼和

公式输入符号  :

+:           plus(positive正的)
-:         minus(negative负的)
*:         multiplied by
÷:        divided by
=:          be equal to
≈:          be approximately equal to
():          round brackets(parenthess)
[]:          square brackets
{}:          braces
∵:          because
∴:          therefore
≤:          less than or equal to
≥:          greater than or equal to
∞:          infinity
LOGnX:    logx to the base n
xn:          the nth power of x
f(x):          the function of x
dx:          diffrencial of x
x+y:        x plus y
(a+b):      bracket a plus b bracket closed
a=b:        a equals b
a≠b:      a isn't equal to b
a>b :       a is greater than b
a>>b:      a is much greater than b
a≥b:         a is greater than or equal to b
x→∞:    approches infinity
x2:          x  square
x3:          x cube
√ ̄x:      the square root of x
3√ ̄x:    the cube root of x
3‰:    three peimill
n∑i=1xi:  the summation of x where x goes from 1to n
n∏i=1xi:  the product of x sub i where igoes from 1to n
∫ab:         integral betweens a and b

数学符号(理科符号)——运算符号 : 

1.基本符号:+ - × ÷(/)  
2.分数号:/  
3.正负号:±  
4.相似全等:∽ ≌  
5.因为所以:∵ ∴  
6.判断类:= ≠ < ≮(不小于) > ≯(不大于)  
7.集合类:∈(属于) ∪(并集) ∩(交集)  
8.求和符号:∑  
9.n次方符号:¹(一次方) ²(平方) ³(立方) ⁴(4次方) ⁿ(n次方)  
10.下角标:₁ ₂ ₃ ₄  
(如:A₁B₂C₃D₄ 效果如何?)  
11.或与非的"非":¬  
12.导数符号(备注符号):′ 〃  
13.度:° ℃  
14.任意:∀  ;“存在”:∃
15.推出号:⇒  
16.等价号:⇔  
17.包含被包含:⊆ ⊇ ⊂ ⊃  
18.积分:∫ ∬  
19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←  
20.绝对值:|  
21.弧:⌒  
22.圆:⊙ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/47387.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用ETLCloud实现MySQL数据库与StarRocks数据库同步

在现代数据架构中&#xff0c;数据同步是保证数据一致性和分析准确性的关键步骤之一。本文将介绍如何利用ETLCloud技术实现MySQL数据库与StarRocks数仓数据库的高效数据同步&#xff0c;以及其在数据管理和分析中的重要性。 数据同步的重要性 在数据驱动的时代&#xff0c;企…

OpenAI训练数据从哪里来、与苹果合作进展如何?“ChatGPT之母”最新回应

7月9日&#xff0c;美国约翰霍普金斯大学公布了对“ChatGPT之母”、OpenAI首席技术官米拉穆拉蒂&#xff08;Mira Murati&#xff09;的采访视频。这场采访时间是6月10日&#xff0c;访谈中&#xff0c;穆拉蒂不仅与主持人讨论了OpenAI与Apple的合作伙伴关系&#xff0c;还深入…

广联达Linkworks ArchiveWebService XML实体注入漏洞复现

0x01 产品简介 广联达 LinkWorks(也称为 GlinkLink 或 GTP-LinkWorks)是广联达公司(Glodon)开发的一种BIM(建筑信息模型)协同平台。广联达是中国领先的数字建造技术提供商之一,专注于为建筑、工程和建筑设计行业提供数字化解决方案。 0x02 漏洞概述 广联达 LinkWorks…

在VScode中编译C程序

一&#xff0c;安装 VS Code 下载并安装VS code&#xff0c;安装简体中文和C/C插件。略。 二&#xff0c;配置gcc环境 下载并安装MinGW。添加环境变量。略。 在cmd中输入 gcc -v 能打印版本即可。 三&#xff0c;打开文件夹&#xff0c;创建工作区 1&#xff0c;打开文件夹…

数据库系统概论:数据库系统模式

数据库系统在我们的数字世界中扮演着至关重要的角色&#xff0c;无论是个人设备还是企业级应用&#xff0c;数据的有效管理和访问都是必不可少的。而数据库系统的模式结构是确保数据一致性和可访问性的关键组成部分。 数据库系统模式 基本概念 型和值 数据模型中有 型(type…

微软研究人员为电子表格应用开发了专用人工智能LLM

微软的 Copilot 生成式人工智能助手现已成为该公司许多软件应用程序的一部分。其中包括 Excel 电子表格应用程序&#xff0c;用户可以在其中输入文本提示来帮助处理某些选项。微软的一组研究人员一直在研究一种新的人工智能大型语言模型&#xff0c;这种模型是专门为 Excel、Go…

Transformer系列专题(四)——Swintransformer

文章目录 九、SwinTransformer9.1 整体网络架构9.2 Transformer Blocks9.3 Patch Embedding&#xff08;将图像切割成小块&#xff08;Patch&#xff09;&#xff09;9.4 window_partition9.5 W-MSA&#xff08;Window Multi-head Self Attention&#xff09;9.6 window_revers…

Redis-应用

目录 应用 缓存雪崩、击穿、穿透和解决办法? 布隆过滤器是怎么工作的? 缓存的数据一致性怎么保证 Redis和Mysql消息一致性 业务一致性要求高怎么办? 数据库与缓存的一致性问题 数据库和缓存的一致性如何保证 如何保证本地缓存和分布式缓存的一致&#xff1f; 如果在…

【Pytorch】一文向您详细介绍 `tensor.max(1, keepdims=True)`

【&#x1f525;Pytorch】一文向您详细介绍 tensor.max(1, keepdimsTrue) 下滑即可查看博客内容 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff…

(一)原生js案例之图片轮播

原生js实现的两种播放效果 效果一 循环播放&#xff0c;单一的效果 代码实现 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-sc…

昇思学习打卡-20-生成式/GAN图像生成

文章目录 网络介绍生成器和判别器的博弈过程数据集可视化模型细节训练过程网络优缺点优点缺点 网络介绍 GAN通过设计生成模型和判别模型这两个模块&#xff0c;使其互相博弈学习产生了相当好的输出。 GAN模型的核心在于提出了通过对抗过程来估计生成模型这一全新框架。在这个…

RK3568笔记三十九:多个LED驱动开发测试(设备树)

若该文为原创文章&#xff0c;转载请注明原文出处。 通过设备树配置一个节点下两个子节点控制两个IO口&#xff0c;一个板载LED&#xff0c;一个外接LED。 一、介绍 通过学习设备树控制GPIO&#xff0c;发现有多种方式 一、直接通过寄存器控制 二、通过设备树&#xff0c;但…

基于STC89C52RC单片机的大棚温控系统(含文档、源码与proteus仿真,以及系统详细介绍)

本篇文章论述的是基于STC89C52RC单片机的大棚温控系统的详情介绍&#xff0c;如果对您有帮助的话&#xff0c;还请关注一下哦&#xff0c;如果有资源方面的需要可以联系我。 目录 摘要 原理图 仿真图 系统总体设计图 代码 系统论文 参考文献 资源下载 摘要 本文介绍的…

CSA笔记3-文件管理命令(补充)+vim+打包解包压缩解压缩命令

grep(-i -n -v -w) [rootxxx ~]# grep root anaconda-ks.cfg #匹配关键字所在的行 [rootxxx ~]# grep -i root anaconda-ks.cfg #-i 忽略大小写 [rootxxx ~]# grep -n root anaconda-ks.cfg #显示匹配到的行号 [rootxxx ~]# grep -v root anaconda-ks.cfg #-v 不匹配有…

甄选范文“论软件维护方法及其应用”软考高级论文,系统架构设计师论文

论文真题 软件维护是指在软件交付使用后,直至软件被淘汰的整个时间范围内,为了改正错误或满足 新的需求而修改软件的活动。在软件系统运行过程中,软件需要维护的原因是多种多样的, 根据维护的原因不同,可以将软件维护分为改正性维护、适应性维护、完善性维护和预防性 维护…

Linux 上 TTY 的起源

注&#xff1a;机翻&#xff0c;未校对。 What is a TTY on Linux? (and How to Use the tty Command) What does the tty command do? It prints the name of the terminal you’re using. TTY stands for “teletypewriter.” What’s the story behind the name of the co…

debian 实现离线批量安装软件包

前言 实现在线缓冲需要的软件和对应依赖的包&#xff0c;离线进行安装 &#xff0c;用于软件封装。 测试下载一个gcc和依赖环境&#xff0c;关闭默认在线源&#xff0c;测试离线安装gcc和依赖环境 兼容 debian ubuntu/test 测试下载安装包到目录 vim /repo_download.sh #!…

【数据结构】算法复杂度

算法复杂度 数据结构算法复杂度 大o渐进表示法空间复杂度 数据结构 数据结构&#xff1a;是计算机存储和组织数据的方式。 比如打开一个网页&#xff0c;我们看到的文字就是数据&#xff0c;这些数据需要用一个结构来把他管理起来&#xff0c;我们称之为&#xff1a;数据结构 …

基于springboot3实现单点登录(一): 单点登录及其相关概念介绍

引言 应网友要求&#xff0c;从本文开始我们将实现一套基于springboot3springsecurity的单点登录认证系统。 单点登录的实现方式有多种&#xff0c;接下来我们会以oauth2为例来介绍和实现。 单点登录介绍 单点登录&#xff08;Single Sign-On&#xff0c;简称SSO&#xff0…

nftables(7)集合(SETS)

简介 在nftables中&#xff0c;集合&#xff08;sets&#xff09;是一个非常有用的特性&#xff0c;它允许你以集合的形式管理IP地址、端口号等网络元素&#xff0c;从而简化规则的配置和管理。 nftables提供了两种类型的集合&#xff1a;匿名集合和命名集合。 匿名集合&…