文章目录
- 网络介绍
- 生成器和判别器的博弈过程
- 数据集可视化
- 模型细节
- 训练过程
- 网络优缺点
- 优点
- 缺点
网络介绍
GAN通过设计生成模型和判别模型这两个模块,使其互相博弈学习产生了相当好的输出。
GAN模型的核心在于提出了通过对抗过程来估计生成模型这一全新框架。在这个框架中,将会同时训练两个模型——捕捉数据分布的生成模型𝐺和估计样本是否来自训练数据的判别模型𝐷。
在训练过程中,生成器会不断尝试通过生成更好的假图像来骗过判别器,而判别器在这过程中也会逐步提升判别能力。这种博弈的平衡点是,当生成器生成的假图像和训练数据图像的分布完全一致时,判别器拥有50%的真假判断置信度。
生成器和判别器的博弈过程
- 在训练刚开始的时候,生成器和判别器的质量都比较差,生成器会随机生成一个数据分布。
- 判别器通过求取梯度和损失函数对网络进行优化,将靠近真实数据分布的数据判定为1,将靠近生成器生成出来数据分布的数据判定为0。
- 生成器通过优化,生成出更加贴近真实数据分布的数据。
- 生成器所生成的数据和真实数据达到相同的分布,此时判别器的输出为1/2。
过程如下图所示:
在上图中,蓝色虚线表示判别器,黑色虚线表示真实数据分布,绿色实线表示生成器生成的虚假数据分布,𝑧表示隐码,𝑥表示生成的虚假图像 𝐺(𝑧) 。
数据集可视化
import matplotlib.pyplot as pltdata_iter = next(mnist_ds.create_dict_iterator(output_numpy=True))
figure = plt.figure(figsize=(3, 3))
cols, rows = 5, 5
for idx in range(1, cols * rows + 1):image = data_iter['image'][idx]figure.add_subplot(rows, cols, idx)plt.axis("off")plt.imshow(image.squeeze(), cmap="gray")
plt.show()
模型细节
下面介绍本网络用到的生成器、判别器及损失函数和优化器:
- 生成器 Generator 的功能是将隐码映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的灰度图像(或 RGB 彩色图像)。在本案例演示中,该功能通过五层 Dense 全连接层来完成的,每层都与 BatchNorm1d 批归一化层和 ReLU 激活层配对,输出数据会经过 Tanh 函数,使其返回 [-1,1] 的数据范围内。注意实例化生成器之后需要修改参数的名称,不然静态图模式下会报错。
- 判别器 Discriminator 是一个二分类网络模型,输出判定该图像为真实图的概率。主要通过一系列的 Dense 层和 LeakyReLU 层对其进行处理,最后通过 Sigmoid 激活函数,使其返回 [0, 1] 的数据范围内,得到最终概率。
- 损失函数使用MindSpore中二进制交叉熵损失函数BCELoss ;
- 这里生成器和判别器都是使用Adam优化器,但是需要构建两个不同名称的优化器,分别用于更新两个模型的参数,详情见下文代码。注意优化器的参数名称也需要修改。
训练过程
import os
import time
import matplotlib.pyplot as plt
import mindspore as ms
from mindspore import Tensor, save_checkpointtotal_epoch = 12 # 训练周期数
batch_size = 64 # 用于训练的训练集批量大小# 加载预训练模型的参数
pred_trained = False
pred_trained_g = './result/checkpoints/Generator99.ckpt'
pred_trained_d = './result/checkpoints/Discriminator99.ckpt'checkpoints_path = "./result/checkpoints" # 结果保存路径
image_path = "./result/images" # 测试结果保存路径
# 生成器计算损失过程
def generator_forward(test_noises):fake_data = net_g(test_noises)fake_out = net_d(fake_data)loss_g = adversarial_loss(fake_out, ops.ones_like(fake_out))return loss_g# 判别器计算损失过程
def discriminator_forward(real_data, test_noises):fake_data = net_g(test_noises)fake_out = net_d(fake_data)real_out = net_d(real_data)real_loss = adversarial_loss(real_out, ops.ones_like(real_out))fake_loss = adversarial_loss(fake_out, ops.zeros_like(fake_out))loss_d = real_loss + fake_lossreturn loss_d# 梯度方法
grad_g = ms.value_and_grad(generator_forward, None, net_g.trainable_params())
grad_d = ms.value_and_grad(discriminator_forward, None, net_d.trainable_params())def train_step(real_data, latent_code):# 计算判别器损失和梯度loss_d, grads_d = grad_d(real_data, latent_code)optimizer_d(grads_d)loss_g, grads_g = grad_g(latent_code)optimizer_g(grads_g)return loss_d, loss_g# 保存生成的test图像
def save_imgs(gen_imgs1, idx):for i3 in range(gen_imgs1.shape[0]):plt.subplot(5, 5, i3 + 1)plt.imshow(gen_imgs1[i3, 0, :, :] / 2 + 0.5, cmap="gray")plt.axis("off")plt.savefig(image_path + "/test_{}.png".format(idx))# 设置参数保存路径
os.makedirs(checkpoints_path, exist_ok=True)
# 设置中间过程生成图片保存路径
os.makedirs(image_path, exist_ok=True)net_g.set_train()
net_d.set_train()# 储存生成器和判别器loss
losses_g, losses_d = [], []for epoch in range(total_epoch):start = time.time()for (iter, data) in enumerate(mnist_ds):start1 = time.time()image, latent_code = dataimage = (image - 127.5) / 127.5 # [0, 255] -> [-1, 1]image = image.reshape(image.shape[0], 1, image.shape[1], image.shape[2])d_loss, g_loss = train_step(image, latent_code)end1 = time.time()if iter % 10 == 10:print(f"Epoch:[{int(epoch):>3d}/{int(total_epoch):>3d}], "f"step:[{int(iter):>4d}/{int(iter_size):>4d}], "f"loss_d:{d_loss.asnumpy():>4f} , "f"loss_g:{g_loss.asnumpy():>4f} , "f"time:{(end1 - start1):>3f}s, "f"lr:{lr:>6f}")end = time.time()print("time of epoch {} is {:.2f}s".format(epoch + 1, end - start))losses_d.append(d_loss.asnumpy())losses_g.append(g_loss.asnumpy())# 每个epoch结束后,使用生成器生成一组图片gen_imgs = net_g(test_noise)save_imgs(gen_imgs.asnumpy(), epoch)# 根据epoch保存模型权重文件if epoch % 1 == 0:save_checkpoint(net_g, checkpoints_path + "/Generator%d.ckpt" % (epoch))save_checkpoint(net_d, checkpoints_path + "/Discriminator%d.ckpt" % (epoch))
网络优缺点
优点
- 生成数据自然:
GAN通过生成器和判别器的对抗训练,生成的图像数据具有高度的自然性和逼真度。这种自然性使得GAN在图像生成、图像修复、图像超分辨率等领域具有广泛应用。 - 训练效率高:
GAN的创新之处在于其两个神经网络的对抗训练方式,这种训练方式简单易控,且能够显著改善生成式模型的训练效率。
缺点
- 训练不稳定:
GAN的训练过程可能不稳定,容易出现模式崩溃等问题。模式崩溃表现为生成器开始退化,总是生成同样的样本点,无法继续学习。这可能是由于生成器和判别器之间的对抗关系过于复杂,导致训练难以达到稳定的纳什均衡状态。 - 计算资源需求高:
GAN的训练过程需要大量的计算资源和时间。特别是对于大规模的数据集和高分辨率的图像,GAN的训练成本可能非常高昂。此外,GAN中的神经网络结构通常较为复杂,这也需要大量的存储空间来支持。
此章节学习到此结束,感谢昇思平台。