昇思25天学习打卡营第23天|基于MindSpore的Pix2Pix实现图像转换

Pix2Pix实现图像转换

Pix2Pix概述

Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。Pix2Pix是将cGAN应用于有监督的图像到图像翻译的经典之作,其包括两个模型:生成器判别器

传统上,尽管此类任务的目标都是相同的从像素预测像素,但每项都是用单独的专用机器来处理的。而Pix2Pix使用的网络作为一个通用框架,使用相同的架构和目标,只在不同的数据上进行训练,即可得到令人满意的结果,鉴于此许多人已经使用此网络发布了他们自己的艺术作品。

基础原理

cGAN的生成器与传统GAN的生成器在原理上有一些区别,cGAN的生成器是将输入图片作为指导信息,由输入图像不断尝试生成用于迷惑判别器的“假”图像,由输入图像转换输出为相应“假”图像的本质是从像素到另一个像素的映射,而传统GAN的生成器是基于一个给定的随机噪声生成图像,输出图像通过其他约束条件控制生成,这是cGAN和GAN的在图像翻译任务中的差异。Pix2Pix中判别器的任务是判断从生成器输出的图像是真实的训练图像还是生成的“假”图像。在生成器与判别器的不断博弈过程中,模型会达到一个平衡点,生成器输出的图像与真实训练数据使得判别器刚好具有50%的概率判断正确。

在教程开始前,首先定义一些在整个过程中需要用到的符号:

  • 𝑥:代表观测图像的数据。
  • 𝑧:代表随机噪声的数据。
  • 𝑦=𝐺(𝑥,𝑧):生成器网络,给出由观测图像𝑥与随机噪声𝑧生成的“假”图片,其中𝑥来自于训练数据而非生成器。
  • 𝐷(𝑥,𝐺(𝑥,𝑧)):判别器网络,给出图像判定为真实图像的概率,其中𝑥来自于训练数据,𝐺(𝑥,𝑧)来自于生成器。

cGAN的目标可以表示为:

该公式是cGAN的损失函数,D想要尽最大努力去正确分类真实图像与“假”图像,也就是使参数𝑙𝑜𝑔𝐷(𝑥,𝑦)最大化;而G则尽最大努力用生成的“假”图像𝑦欺骗D,避免被识破,也就是使参数𝑙𝑜𝑔(1−𝐷(𝐺(𝑥,𝑧)))最小化。cGAN的目标可简化为:

为了对比cGAN和GAN的不同,我们将GAN的目标也进行了说明:

从公式可以看出,GAN直接由随机噪声𝑧�生成“假”图像,不借助观测图像𝑥�的任何信息。过去的经验告诉我们,GAN与传统损失混合使用是有好处的,判别器的任务不变,依旧是区分真实图像与“假”图像,但是生成器的任务不仅要欺骗判别器,还要在传统损失的基础上接近训练数据。假设cGAN与L1正则化混合使用,那么有:

进而得到最终目标:

图像转换问题本质上其实就是像素到像素的映射问题,Pix2Pix使用完全一样的网络结构和目标函数,仅更换不同的训练数据集就能分别实现以上的任务。本任务将借助MindSpore框架来实现Pix2Pix的应用。

准备环节¶

配置环境文件

本案例在GPU,CPU和Ascend平台的动静态模式都支持。

python版本:Python 3.9.19

依赖环境安装

pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14

完整的环境

pip list
Package                        Version
------------------------------ --------------
absl-py                        2.1.0
aiofiles                       22.1.0
aiosqlite                      0.20.0
altair                         5.3.0
annotated-types                0.7.0
anyio                          4.4.0
argon2-cffi                    23.1.0
argon2-cffi-bindings           21.2.0
arrow                          1.3.0
astroid                        3.2.2
asttokens                      2.0.5
astunparse                     1.6.3
attrs                          23.2.0
auto-tune                      0.1.0
autopep8                       1.5.5
Babel                          2.15.0
backcall                       0.2.0
beautifulsoup4                 4.12.3
black                          24.4.2
bleach                         6.1.0
certifi                        2024.6.2
cffi                           1.16.0
charset-normalizer             3.3.2
click                          8.1.7
cloudpickle                    3.0.0
colorama                       0.4.6
comm                           0.2.1
contextlib2                    21.6.0
contourpy                      1.2.1
cycler                         0.12.1
dataflow                       0.0.1
debugpy                        1.6.7
decorator                      5.1.1
defusedxml                     0.7.1
dill                           0.3.8
dnspython                      2.6.1
download                       0.3.5
easydict                       1.13
email_validator                2.2.0
entrypoints                    0.4
exceptiongroup                 1.2.0
executing                      0.8.3
fastapi                        0.111.0
fastapi-cli                    0.0.4
fastjsonschema                 2.20.0
ffmpy                          0.3.2
filelock                       3.15.3
flake8                         3.8.4
fonttools                      4.53.0
fqdn                           1.5.1
fsspec                         2024.6.0
gitdb                          4.0.11
GitPython                      3.1.43
gradio                         4.26.0
gradio_client                  0.15.1
h11                            0.14.0
hccl                           0.1.0
hccl-parser                    0.1
httpcore                       1.0.5
httptools                      0.6.1
httpx                          0.27.0
huggingface-hub                0.23.4
idna                           3.7
importlib-metadata             7.0.1
importlib_resources            6.4.0
iniconfig                      2.0.0
ipykernel                      6.28.0
ipympl                         0.9.4
ipython                        8.15.0
ipython-genutils               0.2.0
ipywidgets                     8.1.3
isoduration                    20.11.0
isort                          5.13.2
jedi                           0.17.2
Jinja2                         3.1.4
joblib                         1.4.2
json5                          0.9.25
jsonpointer                    3.0.0
jsonschema                     4.22.0
jsonschema-specifications      2023.12.1
jupyter_client                 7.4.9
jupyter_core                   5.7.2
jupyter-events                 0.10.0
jupyter-lsp                    2.2.5
jupyter-resource-usage         0.7.2
jupyter_server                 2.14.1
jupyter_server_fileid          0.9.2
jupyter-server-mathjax         0.2.6
jupyter_server_terminals       0.5.3
jupyter_server_ydoc            0.8.0
jupyter-ydoc                   0.2.5
jupyterlab                     3.6.7
jupyterlab_code_formatter      2.2.1
jupyterlab_git                 0.50.1
jupyterlab-language-pack-zh-CN 4.2.post1
jupyterlab-lsp                 4.3.0
jupyterlab_pygments            0.3.0
jupyterlab_server              2.27.2
jupyterlab-system-monitor      0.8.0
jupyterlab-topbar              0.6.1
jupyterlab_widgets             3.0.11
kiwisolver                     1.4.5
markdown-it-py                 3.0.0
MarkupSafe                     2.1.5
matplotlib                     3.9.0
matplotlib-inline              0.1.6
mccabe                         0.6.1
mdurl                          0.1.2
mindspore                      2.2.14
mindvision                     0.1.0
mistune                        3.0.2
ml_collections                 0.1.1
mpmath                         1.3.0
msadvisor                      1.0.0
mypy-extensions                1.0.0
nbclassic                      1.1.0
nbclient                       0.10.0
nbconvert                      7.16.4
nbdime                         4.0.1
nbformat                       5.10.4
nest-asyncio                   1.6.0
notebook                       6.5.7
notebook_shim                  0.2.4
numpy                          1.26.4
op-compile-tool                0.1.0
op-gen                         0.1
op-test-frame                  0.1
opc-tool                       0.1.0
opencv-contrib-python-headless 4.10.0.84
opencv-python                  4.10.0.84
opencv-python-headless         4.10.0.84
orjson                         3.10.5
overrides                      7.7.0
packaging                      23.2
pandas                         2.2.2
pandocfilters                  1.5.1
parso                          0.7.1
pathlib2                       2.3.7.post1
pathspec                       0.12.1
pexpect                        4.8.0
pickleshare                    0.7.5
pillow                         10.3.0
pip                            24.1
platformdirs                   4.2.2
pluggy                         1.5.0
prometheus_client              0.20.0
prompt-toolkit                 3.0.43
protobuf                       5.27.1
psutil                         5.9.0
ptyprocess                     0.7.0
pure-eval                      0.2.2
pycodestyle                    2.6.0
pycparser                      2.22
pydantic                       2.7.4
pydantic_core                  2.18.4
pydocstyle                     6.3.0
pydub                          0.25.1
pyflakes                       2.2.0
Pygments                       2.15.1
pylint                         3.2.3
pyparsing                      3.1.2
pytest                         8.0.0
python-dateutil                2.9.0.post0
python-dotenv                  1.0.1
python-json-logger             2.0.7
python-jsonrpc-server          0.4.0
python-language-server         0.36.2
python-multipart               0.0.9
pytoolconfig                   1.3.1
pytz                           2024.1
PyYAML                         6.0.1
pyzmq                          25.1.2
referencing                    0.35.1
requests                       2.32.3
rfc3339-validator              0.1.4
rfc3986-validator              0.1.1
rich                           13.7.1
rope                           1.13.0
rpds-py                        0.18.1
ruff                           0.4.10
schedule-search                0.0.1
scikit-learn                   1.5.0
scipy                          1.13.1
semantic-version               2.10.0
Send2Trash                     1.8.3
setuptools                     69.5.1
shellingham                    1.5.4
six                            1.16.0
smmap                          5.0.1
sniffio                        1.3.1
snowballstemmer                2.2.0
soupsieve                      2.5
stack-data                     0.2.0
starlette                      0.37.2
sympy                          1.12.1
synr                           0.5.0
te                             0.4.0
terminado                      0.18.1
threadpoolctl                  3.5.0
tinycss2                       1.3.0
toml                           0.10.2
tomli                          2.0.1
tomlkit                        0.12.0
toolz                          0.12.1
tornado                        6.4.1
tqdm                           4.66.4
traitlets                      5.14.3
typer                          0.12.3
types-python-dateutil          2.9.0.20240316
typing_extensions              4.11.0
tzdata                         2024.1
ujson                          5.10.0
uri-template                   1.3.0
urllib3                        2.2.2
uvicorn                        0.30.1
uvloop                         0.19.0
watchfiles                     0.22.0
wcwidth                        0.2.5
webcolors                      24.6.0
webencodings                   0.5.1
websocket-client               1.8.0
websockets                     11.0.3
wheel                          0.43.0
widgetsnbextension             4.0.11
y-py                           0.6.2
yapf                           0.40.2
ypy-websocket                  0.8.4
zipp                           3.17.0

准备数据

在本教程中,我们将使用指定数据集,该数据集是已经经过处理的外墙(facades)数据,可以直接使用mindspore.dataset的方法读取。

from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/dataset_pix2pix.tar"download(url, "./dataset", kind="tar", replace=True)

数据展示

调用Pix2PixDatasetcreate_train_dataset读取训练集,这里我们直接下载已经处理好的数据集。

from mindspore import dataset as ds
import matplotlib.pyplot as pltdataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator(output_numpy=True))
# 可视化部分训练数据
plt.figure(figsize=(10, 3), dpi=140)
for i, image in enumerate(data_iter['input_images'][:10], 1):plt.subplot(3, 10, i)plt.axis("off")plt.imshow((image.transpose(1, 2, 0) + 1) / 2)
plt.show()

创建网络

当处理完数据后,就可以来进行网络的搭建了。网络搭建将逐一详细讨论生成器、判别器和损失函数。生成器G用到的是U-Net结构,输入的轮廓图𝑥编码再解码成真是图片,判别器D用到的是作者自己提出来的条件判别器PatchGAN,判别器D的作用是在轮廓图 𝑥的条件下,对于生成的图片𝐺(𝑥)判断为假,对于真实判断为真。

生成器G结构

U-Net是德国Freiburg大学模式识别和图像处理组提出的一种全卷积结构。它分为两个部分,其中左侧是由卷积和降采样操作组成的压缩路径,右侧是由卷积和上采样组成的扩张路径,扩张的每个网络块的输入由上一层上采样的特征和压缩路径部分的特征拼接而成。网络模型整体是一个U形的结构,因此被叫做U-Net。和常见的先降采样到低维度,再升采样到原始分辨率的编解码结构的网络相比,U-Net的区别是加入skip-connection,对应的feature maps和decode之后的同样大小的feature maps按通道拼一起,用来保留不同分辨率下像素级的细节信息。

定义UNet Skip Connection Block
import mindspore
import mindspore.nn as nn
import mindspore.ops as opsclass UNetSkipConnectionBlock(nn.Cell):def __init__(self, outer_nc, inner_nc, in_planes=None, dropout=False,submodule=None, outermost=False, innermost=False, alpha=0.2, norm_mode='batch'):super(UNetSkipConnectionBlock, self).__init__()down_norm = nn.BatchNorm2d(inner_nc)up_norm = nn.BatchNorm2d(outer_nc)use_bias = Falseif norm_mode == 'instance':down_norm = nn.BatchNorm2d(inner_nc, affine=False)up_norm = nn.BatchNorm2d(outer_nc, affine=False)use_bias = Trueif in_planes is None:in_planes = outer_ncdown_conv = nn.Conv2d(in_planes, inner_nc, kernel_size=4,stride=2, padding=1, has_bias=use_bias, pad_mode='pad')down_relu = nn.LeakyReLU(alpha)up_relu = nn.ReLU()if outermost:up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,kernel_size=4, stride=2,padding=1, pad_mode='pad')down = [down_conv]up = [up_relu, up_conv, nn.Tanh()]model = down + [submodule] + upelif innermost:up_conv = nn.Conv2dTranspose(inner_nc, outer_nc,kernel_size=4, stride=2,padding=1, has_bias=use_bias, pad_mode='pad')down = [down_relu, down_conv]up = [up_relu, up_conv, up_norm]model = down + upelse:up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,kernel_size=4, stride=2,padding=1, has_bias=use_bias, pad_mode='pad')down = [down_relu, down_conv, down_norm]up = [up_relu, up_conv, up_norm]model = down + [submodule] + upif dropout:model.append(nn.Dropout(p=0.5))self.model = nn.SequentialCell(model)self.skip_connections = not outermostdef construct(self, x):out = self.model(x)if self.skip_connections:out = ops.concat((out, x), axis=1)return out
基于UNet的生成器
class UNetGenerator(nn.Cell):def __init__(self, in_planes, out_planes, ngf=64, n_layers=8, norm_mode='bn', dropout=False):super(UNetGenerator, self).__init__()unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=None,norm_mode=norm_mode, innermost=True)for _ in range(n_layers - 5):unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=unet_block,norm_mode=norm_mode, dropout=dropout)unet_block = UNetSkipConnectionBlock(ngf * 4, ngf * 8, in_planes=None, submodule=unet_block,norm_mode=norm_mode)unet_block = UNetSkipConnectionBlock(ngf * 2, ngf * 4, in_planes=None, submodule=unet_block,norm_mode=norm_mode)unet_block = UNetSkipConnectionBlock(ngf, ngf * 2, in_planes=None, submodule=unet_block,norm_mode=norm_mode)self.model = UNetSkipConnectionBlock(out_planes, ngf, in_planes=in_planes, submodule=unet_block,outermost=True, norm_mode=norm_mode)def construct(self, x):return self.model(x)

原始cGAN的输入是条件x和噪声z两种信息,这里的生成器只使用了条件信息,因此不能生成多样性的结果。因此Pix2Pix在训练和测试时都使用了dropout,这样可以生成多样性的结果。

基于PatchGAN的判别器

判别器使用的PatchGAN结构,可看做卷积。生成的矩阵中的每个点代表原图的一小块区域(patch)。通过矩阵中的各个值来判断原图中对应每个Patch的真假。

import mindspore.nn as nnclass ConvNormRelu(nn.Cell):def __init__(self,in_planes,out_planes,kernel_size=4,stride=2,alpha=0.2,norm_mode='batch',pad_mode='CONSTANT',use_relu=True,padding=None):super(ConvNormRelu, self).__init__()norm = nn.BatchNorm2d(out_planes)if norm_mode == 'instance':norm = nn.BatchNorm2d(out_planes, affine=False)has_bias = (norm_mode == 'instance')if not padding:padding = (kernel_size - 1) // 2if pad_mode == 'CONSTANT':conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',has_bias=has_bias, padding=padding)layers = [conv, norm]else:paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))pad = nn.Pad(paddings=paddings, mode=pad_mode)conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', has_bias=has_bias)layers = [pad, conv, norm]if use_relu:relu = nn.ReLU()if alpha > 0:relu = nn.LeakyReLU(alpha)layers.append(relu)self.features = nn.SequentialCell(layers)def construct(self, x):output = self.features(x)return outputclass Discriminator(nn.Cell):def __init__(self, in_planes=3, ndf=64, n_layers=3, alpha=0.2, norm_mode='batch'):super(Discriminator, self).__init__()kernel_size = 4layers = [nn.Conv2d(in_planes, ndf, kernel_size, 2, pad_mode='pad', padding=1),nn.LeakyReLU(alpha)]nf_mult = ndffor i in range(1, n_layers):nf_mult_prev = nf_multnf_mult = min(2 ** i, 8) * ndflayers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode, padding=1))nf_mult_prev = nf_multnf_mult = min(2 ** n_layers, 8) * ndflayers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, padding=1))layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1))self.features = nn.SequentialCell(layers)def construct(self, x, y):x_y = ops.concat((x, y), axis=1)output = self.features(x_y)return output

Pix2Pix的生成器和判别器初始化

实例化Pix2Pix生成器和判别器。

import mindspore.nn as nn
from mindspore.common import initializer as initg_in_planes = 3
g_out_planes = 3
g_ngf = 64
g_layers = 8
d_in_planes = 6
d_ndf = 64
d_layers = 3
alpha = 0.2
init_gain = 0.02
init_type = 'normal'net_generator = UNetGenerator(in_planes=g_in_planes, out_planes=g_out_planes,ngf=g_ngf, n_layers=g_layers)
for _, cell in net_generator.cells_and_names():if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):if init_type == 'normal':cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))elif init_type == 'xavier':cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))elif init_type == 'constant':cell.weight.set_data(init.initializer(0.001, cell.weight.shape))else:raise NotImplementedError('initialization method [%s] is not implemented' % init_type)elif isinstance(cell, nn.BatchNorm2d):cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))cell.beta.set_data(init.initializer('zeros', cell.beta.shape))net_discriminator = Discriminator(in_planes=d_in_planes, ndf=d_ndf,alpha=alpha, n_layers=d_layers)
for _, cell in net_discriminator.cells_and_names():if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):if init_type == 'normal':cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))elif init_type == 'xavier':cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))elif init_type == 'constant':cell.weight.set_data(init.initializer(0.001, cell.weight.shape))else:raise NotImplementedError('initialization method [%s] is not implemented' % init_type)elif isinstance(cell, nn.BatchNorm2d):cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))cell.beta.set_data(init.initializer('zeros', cell.beta.shape))class Pix2Pix(nn.Cell):"""Pix2Pix模型网络"""def __init__(self, discriminator, generator):super(Pix2Pix, self).__init__(auto_prefix=True)self.net_discriminator = discriminatorself.net_generator = generatordef construct(self, reala):fakeb = self.net_generator(reala)return fakeb

训练

训练分为两个主要部分:训练判别器和训练生成器。训练判别器的目的是最大程度地提高判别图像真伪的概率。训练生成器是希望能产生更好的虚假图像。在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计。

下面进行训练:

import numpy as np
import os
import datetime
from mindspore import value_and_grad, Tensorepoch_num = 3
ckpt_dir = "results/ckpt"
dataset_size = 400
val_pic_size = 256
lr = 0.0002
n_epochs = 100
n_epochs_decay = 100def get_lr():lrs = [lr] * dataset_size * n_epochslr_epoch = 0for epoch in range(n_epochs_decay):lr_epoch = lr * (n_epochs_decay - epoch) / n_epochs_decaylrs += [lr_epoch] * dataset_sizelrs += [lr_epoch] * dataset_size * (epoch_num - n_epochs_decay - n_epochs)return Tensor(np.array(lrs).astype(np.float32))dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True, num_parallel_workers=1)
steps_per_epoch = dataset.get_dataset_size()
loss_f = nn.BCEWithLogitsLoss()
l1_loss = nn.L1Loss()def forword_dis(reala, realb):lambda_dis = 0.5fakeb = net_generator(reala)pred0 = net_discriminator(reala, fakeb)pred1 = net_discriminator(reala, realb)loss_d = loss_f(pred1, ops.ones_like(pred1)) + loss_f(pred0, ops.zeros_like(pred0))loss_dis = loss_d * lambda_disreturn loss_disdef forword_gan(reala, realb):lambda_gan = 0.5lambda_l1 = 100fakeb = net_generator(reala)pred0 = net_discriminator(reala, fakeb)loss_1 = loss_f(pred0, ops.ones_like(pred0))loss_2 = l1_loss(fakeb, realb)loss_gan = loss_1 * lambda_gan + loss_2 * lambda_l1return loss_gand_opt = nn.Adam(net_discriminator.trainable_params(), learning_rate=get_lr(),beta1=0.5, beta2=0.999, loss_scale=1)
g_opt = nn.Adam(net_generator.trainable_params(), learning_rate=get_lr(),beta1=0.5, beta2=0.999, loss_scale=1)grad_d = value_and_grad(forword_dis, None, net_discriminator.trainable_params())
grad_g = value_and_grad(forword_gan, None, net_generator.trainable_params())def train_step(reala, realb):loss_dis, d_grads = grad_d(reala, realb)loss_gan, g_grads = grad_g(reala, realb)d_opt(d_grads)g_opt(g_grads)return loss_dis, loss_ganif not os.path.isdir(ckpt_dir):os.makedirs(ckpt_dir)g_losses = []
d_losses = []
data_loader = dataset.create_dict_iterator(output_numpy=True, num_epochs=epoch_num)for epoch in range(epoch_num):for i, data in enumerate(data_loader):start_time = datetime.datetime.now()input_image = Tensor(data["input_images"])target_image = Tensor(data["target_images"])dis_loss, gen_loss = train_step(input_image, target_image)end_time = datetime.datetime.now()delta = (end_time - start_time).microsecondsif i % 2 == 0:print("ms per step:{:.2f}  epoch:{}/{}  step:{}/{}  Dloss:{:.4f}  Gloss:{:.4f} ".format((delta / 1000), (epoch + 1), (epoch_num), i, steps_per_epoch, float(dis_loss), float(gen_loss)))d_losses.append(dis_loss.asnumpy())g_losses.append(gen_loss.asnumpy())if (epoch + 1) == epoch_num:mindspore.save_checkpoint(net_generator, ckpt_dir + "Generator.ckpt")

推理¶

获取上述训练过程完成后的ckpt文件,通过load_checkpoint和load_param_into_net将ckpt中的权重参数导入到模型中,获取数据进行推理并对推理的效果图进行演示(由于时间问题,训练过程只进行了3个epoch,可根据需求调整epoch)。

from mindspore import load_checkpoint, load_param_into_netparam_g = load_checkpoint(ckpt_dir + "Generator.ckpt")
load_param_into_net(net_generator, param_g)
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator())
predict_show = net_generator(data_iter["input_images"])
plt.figure(figsize=(10, 3), dpi=140)
for i in range(10):plt.subplot(2, 10, i + 1)plt.imshow((data_iter["input_images"][i].asnumpy().transpose(1, 2, 0) + 1) / 2)plt.axis("off")plt.subplots_adjust(wspace=0.05, hspace=0.02)plt.subplot(2, 10, i + 11)plt.imshow((predict_show[i].asnumpy().transpose(1, 2, 0) + 1) / 2)plt.axis("off")plt.subplots_adjust(wspace=0.05, hspace=0.02)
plt.show()

引用

[1] Phillip Isola,Jun-Yan Zhu,Tinghui Zhou,Alexei A. Efros. Image-to-Image Translation with Conditional Adversarial Networks.[J]. CoRR,2016,abs/1611.07004.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/47167.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【贪心算法】贪心算法30题

一、贪心算法简介 证明贪心策略正确性的常用方法:直接证明、交换论证法、反证法、分类讨论… 二、相关编程题 2.1 柠檬水找零 题目链接 860. 柠檬水找零 - 力扣(LeetCode) 题目描述 算法原理 提示:最优解和贪心解唯一可能不同…

《昇思25天学习打卡营第19天|Diffusion扩散模型》

什么是Diffusion Model? 什么是Diffusion Model? 如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从…

共建特色基地 协同互促育人

作为芯片和集成电路、人工智能、智能网联车等临港重点产业布局的知识密集型相关企业,核心技术人才和技术骨干是公司参与全球竞争的重要核心竞争力之一。 知从科技通过不断的创新和规范,在深化产教融合、校企合作、“双师型”、联合办学协同育人、产业人…

git回退分支版本git reset --hard HEAD

git回退分支版本git reset --hard HEAD git reset --hard HEAD 上面命令清除本地所有修改,与下面相似: git reset --hard origin/master 等同于: git reset --hard HEAD~0 说明: HEAD 当前版本 HEAD^ 上一个版本 HEAD^^ 上上…

Linux - 冯-诺依曼体系结构、初始操作系统

目录 冯•诺依曼体系 结构推导 内存提高效率的方法 数据的流动过程 体系结构相关知识 初始操作系统 定位 设计目的 操作系统之上之下分别有什么 管理精髓:先描述,再组织 冯•诺依曼体系 结构推导 计算机基本工作流程图大致如下: 输入设备&a…

支付宝低代码搭建电商小程序,无需编程,可视化操作

大家好,我是小悟 在数字化浪潮的推动下,为了更快速、高效地搭建电商小程序,支付宝低代码平台凭借其独特优势,为商家提供了便捷的解决方案。 支付宝低代码平台犹如一座精心打造的智慧工坊,让电商小程序的搭建变得轻而易…

Excel办公技巧:制作二级联动下拉菜单

分享制作二级联动下拉菜单的方法,即使数据有增删,菜单也能自动更新! 可以通过先定义名称,再结合数据验证,来做二级联动下拉菜单。 1. 准备数据 首先,我们需要准备好要进行二级联动下拉菜单的数据&#xff…

在 Linux 系统中安装MySQL 8.x(Ubuntu和CentOS)

文章目录 0. 前言1. 查看 Linux 的发行版本2. 在 Ubuntu 中安装MySQL 8.x2.1 更新包索引2.1.1 更改 Ubuntu 的镜像源2.1.2 更新软件包、升级软件包(耗时可能较长)2.1.3 可能遇到的问题 2.2 安装MySQL2.3 安全配置2.3.1 密码安全级别2.3.2 删除匿名用户2.…

6.Dockerfile及Dockerfile常用指令

Dockerfile是构建docker镜像的脚本文件 Dockerfile有很多的指令构成,指令由上到下依次运行。 每一条指令就是一层镜像,层越多,体积就越大,启动速度也越慢 井号开头的行是注释行。指令写大写写小写都行,但一般都写为…

介绍 Elasticsearch 中的 Learning to Tank - 学习排名

作者:来自 Elastic Aurlien Foucret 从 Elasticsearch 8.13 开始,我们提供了原生集成到 Elasticsearch 中的学习排名 (learning to rank - LTR) 实现。LTR 使用经过训练的机器学习 (ML) 模型为你的搜索引擎构建排名功能。通常,该模型用作第二…

nginx代理缓存

在服务器架构中,反向代理服务器除了能够起到反向代理的作用之外,还可以缓存一些资源,加速客户端访问,nginx的ngx_http_proxy_module模块不仅包含了反向代理的功能还包含了缓存功能。 1、定义代理缓存规则 参数详解: p…

减分虎-交管12123学习题目及答案

学法减分是对驾驶证已经存在的记分进行减免,并不是给驾驶证进行加分,不是代替违章扣分。学法免费获取的分值正是对扣分记录的清除。比如违章被扣6分,通过学法免分考试把6分清空重新开始。 学法减分政策为驾驶员提供了一次难得的加分机会。然而…

WordPress 6.6 “Dorsey多尔西”发布

WordPress 6.6 “Dorsey多尔西”已经发布,它以传奇的美国大乐队领袖 Tommy Dorsey 名字命名。Dorsey 以其音调流畅的长号和作品而闻名,他的音乐以其情感深度和充满活力的能量吸引了观众。 当您探索 WordPress 6.6 的新功能和增强功能时,让您的…

MBR40150FCT-ASEMI无人机专用MBR40150FCT

编辑:ll MBR40150FCT-ASEMI无人机专用MBR40150FCT 型号:MBR40150FCT 品牌:ASEMI 封装:TO-220F 批号:最新 最大平均正向电流(IF):40A 最大循环峰值反向电压(VRRM&a…

部署kafkamanager

1,检查kafka的版本 到lib下查看 libs/kafka-clients-0.11.0.3.jar kafka的版本 0.11 2,下载kafkamanager 链接: https://pan.baidu.com/s/1qYifoa4 密码:el4o 3,解压后更改该conf下conf/application.conf 中zkhosts …

论文翻译 | Successive Prompting for Decomposing Complex Questions 分解复杂问题的连续提示

摘要 回答需要做出潜在决策的复杂问题是一项具有挑战性的任务,尤其是在监督有限的情况下。 最近的研究利用大型语言模型(LMs)的能力,在少量样本设置中通过展示如何在单次处理复杂问题的同时输出中间推理过程,来执行复杂…

2024年金航标和萨科微扩张

近年电子信息产业链的外迁和世界经济的低迷,各行各业都很卷,加班加点但业绩负增长是常态,互联网大厂阿里巴巴大裁员、字节跳动裁到了大动脉、京东刘强东抛弃躺平的兄弟、深圳华强北做电子元器件的老板老板娘们一脸茫然,周围都弥漫…

2024华为数通HCIP-datacom最新题库(变题更新⑥)

请注意,华为HCIP-Datacom考试831已变题 请注意,华为HCIP-Datacom考试831已变题 请注意,华为HCIP-Datacom考试831已变题 近期打算考HCIP的朋友注意了,如果你准备去考试,还是用的之前的题库,切记暂缓。 1、…

CSI-2介绍

CSI-2介绍 1.CSI-2是什么2.CSI-2功能简述3.分层传输3.1应用层(Application Layer)3.2协议层(Protocol Layer)3.3物理层(PHY Layer) 4.支持传输数据类型5.版本5.1、CSI-2 1.05.2、CSI-2 2.0 6.框图6.1CSI2&a…

【手写数据库内核组件】0501多线程并发模型,任务分发多工作者执行架构实现,多线程读写状态时volatile存储类型使用技巧

0501 多线程管理 ​专栏内容: postgresql使用入门基础手写数据库toadb并发编程 个人主页:我的主页 管理社区:开源数据库 座右铭:天行健,君子以自强不息;地势坤,君子以厚德载物. 文章目录 0501 多…