机器学习(五) -- 监督学习(6) --逻辑回归

系列文章目录及链接

上篇:机器学习(五) -- 监督学习(5) -- 线性回归2
下篇:机器学习(五) -- 监督学习(7) --SVM1


前言

tips:标题前有“***”的内容为补充内容,是给好奇心重的宝宝看的,可自行跳过。文章内容被“文章内容”删除线标记的,也可以自行跳过。“!!!”一般需要特别注意或者容易出错的地方。

本系列文章是作者边学习边总结的,内容有不对的地方还请多多指正,同时本系列文章会不断完善,每篇文章不定时会有修改。

由于作者时间不算富裕,有些内容的《算法实现》部分暂未完善,以后有时间再来补充。见谅!

文中为方便理解,会将接口在用到的时候才导入,实际中应在文件开始统一导入。


一、通俗理解及定义

1、什么叫逻辑回归(What)

逻辑回归=线性回归+sigmoid函数

逻辑回归(Logistic Regression)简单来讲,就是找到一条直线将一个二分类数据划分开。

2、逻辑回归的目的(Why)

解决二分类问题,通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。

3、如何找到这条线(How)

其实这和线性回归步骤类似,其中差别在于“检查模型拟合效果”和“调整模型位置角度”使用的方法有所不同。

  1. 随机画一条直线,作为初始的直线
  2. 检查一下它的拟合效果,
  3. 如果不是最好的(达到阈值),就调整直线位置和角度
  4. 重复第2、3步,直到最好效果(到达设定的阈值),最终就是我们想要的模型。

需要用一个函数(sigmoid函数),对于输入的数据都将其映射到0-1之间,并且如果函数值大于0.5,就判定为1,否则属于0。这样就可以转换为概率表示。

二、原理理解及公式

1、感知机

1.1、问题描述

以图片分类为例,将图片分为纵向和横向

把这些数据通过图上展示就是这样,为了将图中不同颜色(不同类别)的点分开,我们画这样一条线。这次分类的目的就是为了找到这样一条线。

这是一条“使权重向量成为法线向量的直线”(让权重向量与直线垂直)

w即为权重向量;使其成为法线向量的的直线,即使

1.2、感知机模型

接受多个值后将每个值与各自权重相乘,最后输出总和的模型。

1.3、判别函数

内积是衡量向量之间相似程度的指标,结果为正说明相似,为0则垂直,为负则说明不相似。

更好理解,因为|w|与|x|都为正数,所以决定内积符号的是cosθ,即小于90度为相似,大于90度为不相似,即

1.4、参数估计(权重更新表达式)

若与原标签值相等,则权重向量不更新,若与原标签值不等,则用向量相加为权重向量更新。

如图所示,若与原标签不等,则

更新后直线

 更新后,相等

步骤:先随机确定一条直线(即随机确定一个权重向量w),内积代入一个真实值数据x,通过判别函数得到一个值(1或-1),若与原标签值相等,则权重向量不更新,若与原标签值不等,则用向量相加为权重向量更新。

!!!注意:感知机只能解决线性可分问题
        线性可分:可以使用直线分类的情况
        线性不可分:不能用直线分类

2、sigmoid函数

黑色为sigmoid函数,红色为阶跃函数(不连续)

作用:逻辑回归的输入就是一个线性回归的结果,我们在线性回归中可以得到一个预测值,Sigmoid 函数将任意的输入映射到了[0,1]区间,这样就完成了由值到概率的转换,也就是分类任务。

3、逻辑回归

3.1、模型定义

逻辑回归=线性回归+sigmoid函数

 线性回归:

sigmoid函数:

逻辑回归:

为了让y表示标签,改为:

做概率使用: 

3.2、判别函数

即可以通过概率来区分类别

3.3、决策边界

可以改写为如下形式: 

代入数据:

既有这样的图

这样用于数据分类的直线就是决策边界 

3.4、目标函数(对数似然函数)

我们希望是这样的:
        当y=1时,P(y=1|x)是最大的
        当y=0时,P(y=0|x)是最大的

 似然函数(联合概率):这里是概率我们希望它最大化

对数似然函数: 直接对似然函数进行微分比较困难,需要先取对数

变形后即为: 

3.4、参数估计(梯度下降)

似然函数的微分:

3、优缺点

3.1、优点:

1. 实现简单:逻辑回归是一种简单的算法,容易理解和实现。
2. 计算效率高:逻辑回归的计算量相对较小,适用于大规模数据集。
3. 可解释性强:逻辑回归输出结果是概率值,可以直观地解释模型的输出。

3.2、缺点:

1. 线性可分性要求:逻辑回归是一种线性模型,对于非线性可分的问题表现较差。
2. 特征相关性问题:逻辑回归对输入特征之间的相关性较为敏感,当特征之间存在较强相关性时,可能导致模型的性能下降。
3. 过拟合问题:当样本特征过多或样本数量较少时,逻辑回归容易出现过拟合的问题。

三、**算法实现

1、获取数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib notebook# 读取数据
train=pd.read_csv('csv/images2.csv')
train_x=train.iloc[:,0:2]
train_y=train.iloc[:,2]
# print(train_x)
# print(train_y)# 绘图
plt.figure()
plt.plot(train_x[train_y ==1].iloc[:,0],train_x[train_y ==1].iloc[:,1],'o')
plt.plot(train_x[train_y == 0].iloc[:,0],train_x[train_y == 0].iloc[:,1],'x')
plt.axis('scaled')
# plt.axis([0,500,0,500])
plt.show()

2、 数据处理

# 初始化参数
theta=np.random.randn(3)# 标准化
mu = train_x.mean(axis=0)
sigma = train_x.std(axis=0)
# print(mu,sigma)def standardize(x):return (x - mu) / sigmatrain_z = standardize(train_x)
# print(train_z)# 增加 x0
def to_matrix(x):x0 = np.ones([x.shape[0], 1])return np.hstack([x0, x])X = to_matrix(train_z)# 绘图
plt.figure()
plt.plot(train_z[train_y ==1].iloc[:,0],train_z[train_y ==1].iloc[:,1],'o')
plt.plot(train_z[train_y == 0].iloc[:,0],train_z[train_y == 0].iloc[:,1],'x')
plt.axis('scaled')
# plt.axis([0,500,0,500])
plt.show()

3.sigmoid函数和判别函数

# sigmoid 函数
def f(x):return 1 / (1 + np.exp(-np.dot(x, theta)))# 分类函数
def classify(x):return (f(x) >= 0.5).astype(np.int)

4.参数设置与训练

# 学习率
ETA = 1e-3# 重复次数
epoch = 5000# 更新次数
count = 0
print(f(X))# 重复学习
for _ in range(epoch):theta = theta - ETA * np.dot(f(X) - train_y, X)# 日志输出count += 1print('第 {} 次 : theta = {}'.format(count, theta))

5.绘图确认

# 绘图确认
plt.figure()
x0 = np.linspace(-2, 2, 100)
plt.plot(train_z[train_y ==1].iloc[:,0],train_z[train_y ==1].iloc[:,1],'o')
plt.plot(train_z[train_y == 0].iloc[:,0],train_z[train_y == 0].iloc[:,1],'x')
plt.plot(x0, -(theta[0] + theta[1] * x0) / theta[2], linestyle='dashed')
plt.show()

 

6.验证

# 验证
text=[[200,100],[500,400],[150,170]]
tt=pd.DataFrame(text,columns=['x1','x2'])
# text=pd.DataFrame({'x1':[200,400,150],'x2':[100,50,170]})
x=to_matrix(standardize(tt))
print(x)
a=f(x)
print(a)b=classify(x)
print(b)plt.plot(x[:,1],x[:,2],'ro')

 

四、接口实现

1、乳腺癌数据集介绍

1.1、API

from sklearn.datasets import load_breast_cancer

1.2、基本信息

# 键
print("乳腺癌数据集的键:",breast_cancer.keys())# 特征值名字、目标值名字
print("乳腺癌数据集的特征数据形状:",breast_cancer.data.shape)
print("乳腺癌数据集的目标数据形状:",breast_cancer.target.shape)print("乳腺癌数据集的特征值名字:",breast_cancer.feature_names)
print("乳腺癌数据集的目标值名字:",breast_cancer.target_names)# print("乳腺癌数据集的特征值:",breast_cancer.data)
# print("乳腺癌数据集的目标值:",breast_cancer.target)# 返回值
# print("乳腺癌数据集的返回值:\n", breast_cancer)
# 返回值类型是bunch--是一个字典类型# 描述
# print("乳腺癌数据集的描述:",breast_cancer.DESCR)# 每个特征信息
print("最小值:",breast_cancer.data.min(axis=0))
print("最大值:",breast_cancer.data.max(axis=0))
print("平均值:",breast_cancer.data.mean(axis=0))
print("标准差:",breast_cancer.data.std(axis=0))

# 取其中间两列特征
x=breast_cancer.data[0:569,0:2]
y=breast_cancer.target[0:569]samples_0 = x[y==0, :]
samples_1 = x[y==1, :]# 实现可视化
plt.figure()
plt.scatter(samples_0[:,0],samples_0[:,1],marker='o',color='r')
plt.scatter(samples_1[:,0],samples_1[:,1],marker='x',color='y')
plt.xlabel('mean radius')
plt.ylabel('mean texture')
plt.show()

# 绘制每个特征直方图,显示特征值的分布情况。
for i, feature_name in enumerate(breast_cancer.feature_names):plt.figure(figsize=(6, 4))sns.histplot(breast_cancer.data[:, i], kde=True)plt.xlabel(feature_name)plt.ylabel("数量")plt.title("{}直方图".format(feature_name))plt.show()

# 绘制箱线图,展示每个特征最小值、第一四分位数、中位数、第三四分位数和最大值概括。
plt.figure(figsize=(10, 6))
sns.boxplot(data=breast_cancer.data, orient="v")
plt.xticks(range(len(breast_cancer.feature_names)), breast_cancer.feature_names, rotation=90)
plt.xlabel("特征")
plt.ylabel("值")
plt.title("特征箱线图")
plt.show()

1.3、缺失值与异常值

# 创建DataFrame对象
df = pd.DataFrame(breast_cancer.data, columns=breast_cancer.feature_names)# 检测缺失值
print("缺失值数量:")
print(df.isnull().sum())# 检测异常值
print("异常值统计信息:")
print(df.describe())
# 使用.describe()方法获取数据集的统计信息,包括计数、均值、标准差、最小值、25%分位数、中位数、75%分位数和最大值。

1.4、相关性

# 创建DataFrame对象
df = pd.DataFrame(breast_cancer.data, columns=breast_cancer.feature_names)# 计算相关系数
correlation_matrix = df.corr()# 可视化相关系数热力图
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap")
plt.show()

 2、API

sklearn.linear_model.LogisticRegression导入:
from sklearn.linear_model import LogisticRegression语法:
LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)solver可选参数:{'liblinear', 'sag', 'saga','newton-cg', 'lbfgs'},默认: 'liblinear';用于优化问题的算法。对于小数据集来说,“liblinear”是个不错的选择,而“sag”和'saga'对于大型数据集会更快。对于多类问题,只有'newton-cg', 'sag', 'saga'和'lbfgs'可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。penalty:正则化的种类C:正则化力度

2、流程

2.1、获取数据

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LogisticRegression# 获取数据
breast_cancer = load_breast_cancer()

2.2、数据预处理

# 划分数据集
x_train,x_test,y_train,y_test = train_test_split(breast_cancer.data, breast_cancer.target, test_size=0.2, random_state=1473) 

2.3、特征工程

2.4、模型训练

# 实例化学习器
lr = LogisticRegression(max_iter=10000)# 模型训练
lr.fit(x_train, y_train)print("建立的逻辑回归模型为:\n", lr)

 

2.5、模型评估

# 用模型计算测试值,得到预测值
y_pred = lr.predict(x_test)
print('预测前20个结果为:\n', y_pred[:20])# 求出预测结果的准确率和混淆矩阵
from sklearn.metrics import accuracy_score, confusion_matrix,precision_score,recall_score
print("预测结果准确率为:", accuracy_score(y_test, y_pred))
print("预测结果混淆矩阵为:\n", confusion_matrix(y_test, y_pred))print("预测结果查准率为:", precision_score(y_test, y_pred))
print("预测结果召回率为:", recall_score(y_test, y_pred))

from sklearn.metrics import roc_curve,roc_auc_score,aucfpr,tpr,thresholds=roc_curve(y_test,y_pred)plt.plot(fpr, tpr)
plt.axis("square")
plt.xlabel("假正例率/False positive rate")
plt.ylabel("正正例率/True positive rate")
plt.title("ROC curve")
plt.show()print("AUC指标为:",roc_auc_score(y_test,y_pred))

 

# 求出预测取值和真实取值一致的数目 
num_accu = np.sum(y_test == y_pred)
print('预测对的结果数目为:', num_accu)
print('预测错的结果数目为:', y_test.shape[0]-num_accu)
print('预测结果准确率为:', num_accu/y_test.shape[0])

2.6、结果预测

经过模型评估后通过的模型可以代入真实值进行预测。


旧梦可以重温,且看:机器学习(五) -- 监督学习(5) -- 线性回归2
欲知后事如何,且看:机器学习(五) -- 监督学习(7) --SVM1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/46082.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp 支付宝小程序 芝麻免押 免押金

orderStr参数如下: my.tradePay({orderStr:res, // 完整的支付参数拼接成的字符串,从 alipay.fund.auth.order.app.freeze 接口获取success: (res) > {console.log(免押成功);console.log(JSON.stringify(res),不是JOSN);console.log(JSON.stringify…

使用机器学习 最近邻算法(Nearest Neighbors)进行点云分析 (scikit-learn Open3D numpy)

使用 NearestNeighbors 进行点云分析 在数据分析和机器学习领域,最近邻算法(Nearest Neighbors)是一种常用的非参数方法。它广泛应用于分类、回归和聚类分析等任务。下面将介绍如何使用 scikit-learn 库中的 NearestNeighbors 类来进行点云数…

[GICv3] 3. 物理中断处理(Physical Interrupt Handling)

中断生命周期 ​​ 外设通过中断信号线生成中断,或者软件生成中断(SGI)。Distributor 和 ReDistributor 配合按照中断分组和中断优先级仲裁后将最高优先级的中断分发到 CPU interface。cpu interface 向中断发送到 PEPE 读取 IAR 寄存器&am…

使用Java连接星火认知大模型:一个实际案例解析

引言: 随着人工智能技术的快速发展,认知大模型如星火在自然语言处理、语音识别等领域发挥着越来越重要的作用。本文将通过一个实际的Java代码示例,详细讲解如何使用Java连接星火认知大模型,并处理其响应。 1.导入依赖&#xff1…

【防火墙】防火墙安全策略用户认证综合实验

实验拓扑及要求 拓扑搭建及IP配置 防火墙(总公司)和交换机(汇聚生产区和办公区)的接口配置 生产区在vlan2,办公区在vlan3,防火墙在G1/0/3接口上创建子接口G1/0/3.1和G1/0/3.2对两个区域分别进行管理 交换…

全国297个地级市 2006年-2021年 绿地面积、建成区绿化覆盖率(数据整理)

城市绿化覆盖数据:评估生态环境与生活质量的指标 城市绿化是衡量一个城市生态环境质量和居民生活质量的重要指标。绿地面积和建成区绿化覆盖率是两个关键的数据点,它们提供了对城市绿化状况的直接观察。 绿地面积与建成区绿化覆盖率的定义:…

【postgresql】锁

PostgreSQL 提供了多种锁模式来控制对表和行的并发访问,以确保数据的一致性和完整性。这些锁模式包括表级锁和行级锁,它们可以由应用程序显式控制,也可以在执行大多数 PostgreSQL 命令时自动获取。 锁类型 PostgreSQL类型的锁包括&#xff…

数据结构(Java):树二叉树

目录 1、树型结构 1.1 树的概念 1.2 如何判断树与非树 1.3 树的相关概念 1.4 树的表示形式 1.4.1 孩子兄弟表示法 2、二叉树 2.1 二叉树的概念 2.2 特殊的二叉树 2.3 二叉树的性质 2.4 二叉树的存储 2.5 二叉树的遍历 1、树型结构 1.1 树的概念 树型结构是一种非线…

prompt第二讲-langchain实现中英翻译助手

文章目录 prompt模板 (prompt template)langchain 中的prompt模板 (prompt template)langchain实现中英翻译助手 prompt模板 (prompt template) 开篇我介绍了在llm中,通常输入的那个字符串会被我们称之为prompt,下面就是一个中英文翻译助手的prompt例子…

【Three.js基础学习】16.Physice

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 前言 课程回顾 物理库 3D Ammo.js Cannon.js Oimo.js 2D Matter.js P2.js Planck.js Box2D.js 补充:一些看似3D的效果实际使用2D库来实现的 物理 和 three.js的结合 概念补充…

Java核心篇之JVM探秘:对象创建与内存分配机制

系列文章目录 第一章 Java核心篇之JVM探秘:内存模型与管理初探 第二章 Java核心篇之JVM探秘:对象创建与内存分配机制 第三章 Java核心篇之JVM探秘:垃圾回收算法与垃圾收集器 第四章 Java核心篇之JVM调优实战:Arthas工具使用及…

《Windows API每日一练》9.25 系统菜单

/*------------------------------------------------------------------------ 060 WIN32 API 每日一练 第60个例子POORMENU.C:使用系统菜单 GetSystemMenu函数 AppendMenu函数 (c) www.bcdaren.com 编程达人 -------------------------------------------…

亿康源用科技引领发展,开启大健康产业新篇章

(本台记者报)近日,杭州有一家公司凭借深厚的科技研发实力与卓越的创新能力在大健康领域屡受好评,其研发的新品一经推出便成为行业热议。为了探寻该公司的经营秘诀,我们找到了这家公司——亿康源,并有幸与亿…

防火墙组网与安全策略实验

实验要求: 实现: 防火墙接口配置: 所有接口均配置为三层接口 由于G1/0/3口下为vlan环境,所以防火墙需要配置子接口 : 交换机划分vlan分开生产区和办公区、配置trunk干道 : 安全策略: 生产区访…

深度学习概览

引言 深度学习的定义与背景 深度学习是机器学习的一个子领域,涉及使用多层神经网络分析和学习复杂的数据模式。深度学习的基础可以追溯到20世纪80年代,但真正的发展和广泛应用是在21世纪初。计算能力的提升和大数据的可用性使得深度学习在许多领域取得…

[C++] 由浅入深理解面向对象思想的组成模块

文章目录 (一) 类的默认成员函数(二) 构造函数构造函数的特征构造函数示例无参构造带参构造 冲突:全缺省参数的构造函数与无参构造函数 (三)析构函数特性析构函数的析构过程解析 (四)拷贝构造函数什么是拷贝构造?特性为…

初始c语言(2)运算符与表达式

一 c语言提供的运算符类型 以上会后续介绍 二 现阶段我们掌握如下的基本操作符 注意!计算机的除法只会保留整数部分(若被除数未负则不同的软件取整的结果不唯一) 三 自加()自减(--)符号 若为…

GESP CCF C++ 四级认证真题 2024年6月

第 1 题 下列代码中,输出结果是( ) A. 12 24 24 12 B. 24 12 12 24 C. 12 12 24 24 D. 24 24 12 12 第 2 题 下面函数不能正常执行的是() A. B. C. D. 第 3 题 下面程序…

AI Native时代:重塑人机交互与创作流程

随着2024年上海世界人工智能大会的圆满落幕,业界领袖们纷纷就AI应用的新机遇展开深入讨论。结合a16z播客中的观点,本文将探讨AI原生(AI Native)应用的几个关键特征,这些特征正在重新定义我们的工作方式和创作过程。 一…

0708,LINUX目录相关操作 + LINUX全导图

主要是冷气太足感冒了,加上少吃药抗药性差,全天昏迷,学傻了学傻了 01:简介 02: VIM编辑器 04:目录 05:文件 03:常用命令 06:进程 07:进程间的通信 cat t_c…