排序(二)——快速排序(QuickSort)

        欢迎来到繁星的CSDN,本期内容包括快速排序(QuickSort)的递归版本和非递归版本以及优化。

一、快速排序的来历

        快速排序又称Hoare排序,由霍尔 (Sir Charles Antony Richard Hoare) ,一位英国计算机科学家发明。霍尔本人是在发现冒泡排序不够快的前提下,发明了快速排序。不像希尔排序等用名字命名排序方法,霍尔直接将其命名为快速排序,但时至今日,快速排序仍然是使用最广泛最稳定的排序算法。

二、快速排序主代码

        快速排序是如何实现的呢?私以为思想和二叉树的前序遍历类似。

     (没有看过二叉树的看这里:一文带你入门二叉树!-CSDN博客)

void QuickSort(int* a, int left, int right)
{if (left >= right)return;int keyi = PartSort1(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}

        快速排序采用了分治的思想,之前在排序(一)提到过,如果将数组拆成一个个小块再排序,会比一整个数组集体排序来的快。快排也正是利用这一点,从零到整地排序整个数组,并确定好分拆端点的最终位置,使得每一组的排序结束都是最终位置,无需再调整。而由于不知道数组需要被拆分成几块,类似于二叉树的递归遍历,快排也需要递归来帮助拆分和子数组排序。

        下面阐述PartSort1这个函数是如何进行单趟排序的了。

三、快速排序(递归版单趟排序)

      Part1 Hoare法

        先上动图:

        

        可以注意到,PartSort的参数是数组a,数组最左端元素的下标left,最右端元素的下标right。

        key就是子数组(即left~right范围内)的第一个元素。

        整个流程如下:

        1、right向左遍历,直到找到一个小于key的值,停下。

        2、left向右遍历,直到找到一个大于key的值,停下。

        3、两者交换。

        4、重复上述流程,直到left与right相遇,交换key和最后相遇处的下标mid。

        5、随后返回mid,并利用mid继续将[left,right]区间分割为[left,mid-1]和[mid+1,right]区间,当不能分割的时候,该数组排序完毕。

        问题讲解

        如何确保key交换后所在的位置就是最终位置?

        首先,从一个升序数组来看,对于其中任何一个元素(除首尾两个),该元素左侧均更小,右侧均更大。换句话说,保证左侧比key元素更小,右侧比key元素更大,即得到了这一元素的位置。

        不难发现,被left遍历过的地址都是比key小的,被right遍历过的地址都是比key大的,因为如有left发现比key大,或者right发现比key小,都已进行过交换。

         唯一需要判定的,就是最后一个元素是否比key小。

        (1)left遇到right       

        当right停下,说明right所处位置的元素应该比key小。

        那么left撞到right的时候,一定是right所处的位置,保证了该位置比key小。

        (2)right遇到left

        当left停下,说明已经交换完毕,此时left所处位置的元素比key小。

   两种情况本质相同,都是保证了停下的那一方所处位置比key小。

int PartSort1(int* arr, int begin, int end)
{int left = begin, right = end;int key = begin;while (left < right){//left<right防止越界//使用>=而不是>防止数据出现死循环while (left < right && arr[right] >= arr[key])//寻找比key小的值{right--;}while (left < right && arr[left] <= arr[key])//寻找比key大的值{left++;}swap(&arr[left], &arr[right]);}int mid = left;swap(&arr[key], &arr[mid]);return mid;
}

      Part2 挖坑法

        先上动图:        

        挖坑法和hoare法的差别不大,思路都是将key的位置安排在最终位置后,再分段快排。

        但挖坑法的确会比hoare法更加容易理解。

        坑的位置就代表相遇位置,每“交换”一次,就将坑位换到被交换的位置,最后坑落在哪里,就将key值填入。

        和hoare法不同的是,挖坑法需要多一个临时变量储存key值,在进行操作的时候只需要赋值,而不是swap交换。

int PartSort2(int* a, int left, int right) {int key = a[left];int hole = left;while (left < right) {while (left < right && a[right] >= key) {right--;}swap(&a[right], &a[hole]);hole = right;while (left < right && a[left] <= key) {left++;}swap(&a[left], &a[hole]);hole = left;}int mid = hole;a[hole] = key;return mid;
}

       Part3 双指针法

        怎么能够让双指针缺席呢!

        

        本质和前面两种没有区别,只是遍历的方向不同,前两种都是左右两侧开始遍历,而双指针法从一端开始遍历。prev代表比key小的值,cur去遍历,并确保prev的下一个位置上比key大,将较大的元素集体向后驱赶。

int PartSort3(int* a, int left, int right) {int fast = left;int slow = left;int key = a[left];while (fast <= right) {if(a[fast] < key)swap(&a[++slow], &a[fast]);fast++;}swap(&a[slow], &a[left]);return slow;
}

      总结

        Part123三种办法没有高下之分,都可以作为QuickSort的一部分使用。

        可以说QuickSort的代码实现和理解复杂程度并不如之前说的堆排那么抽象,但是性能确实优秀。

四、快速排序(非递归版)

        我们知道,递归占据了大量的栈帧空间,尽管市面上大部分编译器已经增强了递归的性能,致使用递归的快排和不用递归的快排时间上差别不大,但递归空间上的占据却不可忽视。快排非递归版应运而生。

   这一部分需要用到栈的知识,如果还没看,可以查看:栈和队列的介绍与实现-CSDN博客

        非递归版本最重要的是,如何实现数组的分割,与进行多次排序。

        利用好之前学过的数据结构,我们可以想起栈与队列,我们用栈来演示。

void QuickSortno(int* a, int left, int right) {Stack ps;StackInit(&ps);StackPush(&ps, left);StackPush(&ps, right);while (!StackEmpty(&ps)) {int end = StackTop(&ps);StackPop(&ps);int begin = StackTop(&ps);StackPop(&ps);int key=PartSort1(a, begin, end);if (key + 1 < end) {StackPush(&ps, key+1);StackPush(&ps, end);}if (key - 1 > begin) {StackPush(&ps, begin);StackPush(&ps, key-1);}}StackDestroy(&ps);
}

       有点像层序遍历,我们将待排序的子数组的两端,放入栈中,每两个为一组弹出并进行单趟排序,排序完毕后,将新增的两个子数组的两端放入栈中。循环往复,便可以得到结果。

       本质思想还是一致的。

五、快速排序的优化

  快速排序的最坏情况是升序/降序的数组,复杂度都达到了O(n^2)

       经研究表明,问题出在基准值上,也就是每次排序时最左端的数据。如果将基准值改为数组内的随机值,平均情况将比最好情况只糟39%,比只取最左端数据为基准值要好很多。

       所以优化的第一个方向在于调整基准值。

     三数取中法

int GetMidi(int* a, int left, int right)
{int midi = (left + right) / 2;// left midi rightif (a[left] < a[midi]){if (a[midi] < a[right]){return midi;}else if (a[left] < a[right]){return right;}else{return left;}}else // a[left] > a[midi]{if (a[midi] > a[right]){return midi;}else if (a[left] < a[right]){return left;}else{return right;}}
}

        代码很长,实际作用就是在left,(left+right)/2,right三个数中间取中间数,很好地做了分割。正如之前所述,越能将数组分割为两半,便越可以以更高的效率去排序。

      小区间优化

        优化的第二个方向在于快排的最后几层递归上。

        无论递归多少次,我们都要在最后几层递归上耗费大量的时间与空间(只需要看区间数量,便可以知道需排序的区间呈指数级增长)。

        递归是大招,但是更适合大场面,所以我们有以下优化:

if (left >= right)return;

                                                                          ↓

if (right-left<=10)
{InsertSort(a+left, right - left+1);return;
}

        没错,就如排序(一)中提到的,如果数组元素比较少,插入排序的复杂度体现不出来。

        这意味着我们可以在这个时候直接使用插入排序(当然希尔排序也是可以的,可为什么不全部都直接用希尔排序呢?)

        感受一下优化过的和未优化过的:

        优化前:

        优化后:

在10w量级的数据里,优化前后效率提升显著,相信量级更大的时候会更体现出优势。

        本篇内容到此结束,谢谢大家的观看!

        觉得写的还不错的可以点点关注,收藏和赞,一键三连。

        我们下期再见~

        往期栏目: 排序(一)——冒泡排序、直接插入排序、希尔排序(BubbleSOrt,InsertSort,ShellSort)-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/45019.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

oracle 23ai新的后台进程bgnn介绍

前言 昨天发文研究了哪些oracle 后台不能杀 具体文章如下链接 oracle哪些后台进程不能杀&#xff1f;-CSDN博客 其中23ai中新增了一个后台进程bgnn 但是在oracle 23ai database reference中并没有找到该后台进程 有点不甘心就开了个SR&#xff0c;找oracle 官方来看看这个后…

构建工具webpackvite

1. webpack 使用步骤: 1.初始化项目yarn init -y&#xff08;也可以是npm其他包管理工具&#xff09; 2.安装依赖webpack webpack-cli&#xff1a;yarn add -D webpack webpack-cli&#xff08;-D是只用于开发时候加&#xff09; 3.在项目中创建src目录&#xff0c;然后编写代…

开发编码规范笔记

前言 &#xff08;1&#xff09;该博客仅用于个人笔记 格式转换 &#xff08;1&#xff09;查看是 LF 行尾还是CRLF 行尾。 # 单个文件&#xff0c;\n 表示 LF 行尾。\r\n 表示 CRLF 行尾。 hexdump -c <yourfile> # 单个文件&#xff0c;$ 表示 LF 行尾。^M$ 表示 CRLF …

element-ui操作表格行内容如何获取当前行索引?

需求&#xff1a; 根据每个用户的提交次数、撤回次数&#xff0c;动态计算出实际次数&#xff0c;并且提交次数不能小于撤回次数 <template><div><el-table:data"tableData"style"width: 80%"border><el-table-columnprop"date&…

怎么提高音频的播放速度?可以提高音频播放速度的四种方法推荐

怎么提高音频的播放速度&#xff1f;提高音频的播放速度是一种有效的策略&#xff0c;可以显著节省时间和提升信息获取的效率。随着信息量不断增加和学习需求的多样化&#xff0c;快速播放音频已成为许多人在日常生活和工作中的常见做法。这种方法不仅可以用于提高学习效率&…

C语言 指针和数组——指针数组的应用:命令行参数

目录 命令行参数 演示命令行参数与main函数形参间的关系 命令行参数  什么是 命令行参数&#xff08; Command Line Arguments &#xff09;&#xff1f;  GUI 界面之前&#xff0c;计算机的操作界面都是字符式的命令行界面 &#xff08; DOS 、 UNIX 、 Linux &…

曹操的五色棋布阵 - 工厂方法模式

定场诗 “兵无常势&#xff0c;水无常形&#xff0c;能因敌变化而取胜者&#xff0c;谓之神。” 在三国的战场上&#xff0c;兵法如棋&#xff0c;布阵如画。曹操的五色棋布阵&#xff0c;不正是今日软件设计中工厂方法模式的绝妙写照吗&#xff1f;让我们从这个神奇的布阵之…

C++ 【 PCL 】点云添加随机均匀噪声及源代码

PCL向点云添加均匀随机噪声&#xff1a; #include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/common/random.h>int main() {// 加载点云文件pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::Poi…

服务器数据恢复—同品牌不同系列服务器raid5阵列数据恢复方案分析

RAID5磁盘阵列数据恢复案例一&#xff1a; 服务器数据恢复环境&#xff1a; 一台某品牌LH6000系列服务器&#xff0c;通过NetRaid阵列卡将4块硬盘组建为一组RAID5磁盘阵列。操作系统都为Window server&#xff0c;数据库是SQLServer。 服务器故障&#xff1a; LH6000系列服务器…

Python实现傅里叶级数可视化工具

Python实现傅里叶级数可视化工具 flyfish 有matlab实现&#xff0c;我没matlab&#xff0c;我有Python&#xff0c;所以我用Python实现。 整个工具的实现代码放在最后,界面使用PyQt5开发 起源 傅里叶级数&#xff08;Fourier Series&#xff09;由法国数学家和物理学家让-巴…

python3读取shp数据

目录 1 介绍 1 介绍 需要tmp.shp文件和tmp.dbf文件&#xff0c;需要安装geopandas第三方库&#xff0c;python3代码如下&#xff0c; import geopandas as gpdshp_file_path "tmp.shp" shp_data gpd.read_file(shp_file_path) for index, row in shp_data.iterro…

异步任务中传递用户信息的一种优雅写法

目录 前言基础写法测试示例 升级写法测试示例 前言 在异步任务中&#xff0c;我们通常会遇到子任务获取当前用户的场景。我们可能会采取ThreadLocal来存储主线程传递的用户信息。然后在业务开始时set&#xff0c;业务结束时remove&#xff0c;来保证不会出现OOM的场景。 基础…

数据库容灾 | MySQL MGR与阿里云PolarDB-X Paxos的深度对比

开源生态 众所周知&#xff0c;MySQL主备库&#xff08;两节点&#xff09;一般通过异步复制、半同步复制&#xff08;Semi-Sync&#xff09;来实现数据高可用&#xff0c;但主备架构在机房网络故障、主机hang住等异常场景下&#xff0c;HA切换后大概率就会出现数据不一致的问…

Vue打包文件dist放在SpringBoot项目下运行(正确实现全过程)(下)

在上一篇中&#xff0c;实现了Vue打包文件dist放在SpringBoot项目下运行。 Vue打包文件dist放在SpringBoot项目下运行&#xff08;正确实现全过程&#xff09;&#xff08;上&#xff09; 问题 路由刷新会产生404的问题。 原因 vue开发的应用&#xff0c;采用的是SPA单页…

【Linux网络】网络基础

本篇博客整理了 Linux 网络编程的前置知识&#xff0c;例如网络的发展、协议和协议栈分层、网络通信原理、网络地址等&#xff0c;为后续进入 Linux 网络编程作铺垫。 目录 一、网络发展 二、网络协议 1&#xff09;协议的作用 2&#xff09;协议栈 3&#xff09;协议分层…

大吉大利杯_RE

A-Maze-In 一道比较新颖的 maze 题吧&#xff0c; 地图长度是 256 32 * 8 &#xff1f; 不知道了 0.0 难崩&#xff0c;看了一下 wp 说map长度什么的都有&#xff0c;应该就是 16 * 16的 看了一圈&#xff0c;感觉还是要把 DFS&#xff0c;BFS 算法学一下&#xff0c;直接跑…

中国内陆水体氮沉降数据集(1990s-2010s)

全球大气氮沉降急剧增加对内陆水生态系统产生不良影响。中国是全球三大氮沉降热点地区之一&#xff0c;为了充分了解氮沉降对中国内陆水体的影响&#xff0c;制定合理的水污染治理方案&#xff0c;我们需要清楚的量化内陆水体的氮沉降通量。为此&#xff0c;我们利用LMDZ-OR-IN…

Lambda表达式与函数式工具应用详解

在现代编程中&#xff0c;Lambda表达式和函数式工具是处理数据、实现简洁代码的重要工具。尤其是在函数式编程范式中&#xff0c;它们发挥着至关重要的作用。本文将从定义、语法、应用场景到具体案例&#xff0c;详细阐述Lambda表达式和函数式工具在Python和Java等编程语言中的…

Syslog 管理工具

Syslog常被称为系统日志或系统记录&#xff0c;是一种用来在互联网协议&#xff08;TCP/IP&#xff09;的网上中传递记录档消息的标准&#xff0c;常用来指涉实际的Syslog 协议&#xff0c;或者那些提交syslog消息的应用程序或数据库。 系统日志协议&#xff08;Syslog&#x…

VBA即用型代码手册:删除完全空白的行

我给VBA下的定义&#xff1a;VBA是个人小型自动化处理的有效工具。可以大大提高自己的劳动效率&#xff0c;而且可以提高数据的准确性。我这里专注VBA,将我多年的经验汇集在VBA系列九套教程中。 作为我的学员要利用我的积木编程思想&#xff0c;积木编程最重要的是积木如何搭建…