【IMU】 温度零偏标定

温度标定

IMU的零偏随着温度的变化而变化,在全温范围内形状各异,有些可能是单调的,有些可能出现拐点。

多项式误差温度标定

目的是对估计的参数进行温度补偿,获取不同温度时的参数值(零偏、尺度、正交),绘制成曲线。

  • soak method:控制恒温室的温度,然后读取传感器数据进行标定。
  • ramp method:记录一段时间内线性升温、降温时传感器的数据进行标定

温度误差模型,B是bias,T是温度, ∆T 是变温率(温度变化快慢)

B=f(T,∆T)

f靠尝试,通常多项式即可

 

通过改变温度,得到对应温度下的标定参数,用上面的多项式模型进行拟合即可。或者这些数据绘制曲线,用最小二乘多项式去拟合。如果曲线不规则,也可以分段拟合。

拟合是解方程的过程。构建方程时,各未知量的系数要提供足够的变化,这个方程才可解,才能解的好,或者说,才能正确辨识。

如果模型里有变温率的因素存在,而拟合时只提供一组升温的数据,那效果不会太好,因为提供的数据里,每一个温度点只对应一个变温率。

因此,要反复升温降温,而且使用不同的升降温速率,提供丰富变化的数据,才是一个好的样本数据。

图 1为bias在0~60摄氏度温度区间的变化情况。红色线为rawdata,蓝色线为多项式拟合值。

图 1

图2为温漂补偿后的输出:

参考matlab代码如下:

clear;								% 删除工作区中项目,释放系统内存
clc;								% 清空命令行窗口
close all;							% 关闭句柄可见的所有图窗
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function y = tFun(a,X)y = a(1)*X(:,1).^2+a(2)*X(:,1)+a(3)*X(:,2).^2+a(4)*X(:,2)+a(5)*X(:,2).*X(:,1)+a(6);;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read in our toolboxes
addpath('tool');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%mat_path = './IMUDATA/03#/20240408am1101_static_3#_0.csv';fprintf('opening the mat file.\n')
data_imu = csvread(mat_path);imu_wy = data_imu(:,5);
imu_T = data_imu(:,7);
time = data_imu(:,8);
deta_T = data_imu(:,9);x = imu_T(1:1:end);
y = deta_T(1:1:end);
z = imu_wy(1:1:end);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
aveX = ImuDataSum(x, 500)';
N = length(aveX);
aveX = aveX(1:1:N-1);
aveY = ImuDataSum(y, 500)';
aveY = aveY(1:1:N-1);
aveZ = ImuDataSum(z, 500)';
aveZ = aveZ(1:1:N-1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
input = [aveX,aveY] ;
output = aveZ;a0=rand(1,6);
func=@(a,X)a(1)*X(:,1).^2+a(2)*X(:,1)+a(3)*X(:,2).^2+a(4)*X(:,2)+a(5)*X(:,2).*X(:,1)+a(6);;
a=lsqcurvefit(func,a0,input,output);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
testVal = tFun(a,input);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[aveXX,aveYY]=meshgrid(aveX, aveY);%三维绘图
testValZZ = a(1)*aveXX.^2+a(2)*aveXX+a(3)*aveYY.^2+a(4)*aveYY+a(5)*aveYY.*aveXX+a(6);
##figure;
mesh(aveXX, aveYY, testValZZ);
hold on;%散点图
plot3(aveX,aveY,aveZ,"b-",'LineWidth',1);
hold on;
plot3(aveX,aveY,testVal,"r*",'LineWidth',1);
hold on;M = length(testVal);
##% 计算均方根误差
RMSE = sqrt(sum((aveZ - testVal).^2) / M);
fprintf('RMSE:  %d\n', RMSE);

tool

%Purpose:average
%Author name:Yanjh
%date:2024.02.06function aveData = ImuDataSum(data, fs)leng = length(data);%%aveData=zeros(floor(leng/200));for i=1:floor(leng/fs)aveData(i) = sum(data(fs*(i-1)+1:fs*i))/fs;% 每200行取一次平均
endendl = floor(leng/fs) + 1;aveData = [aveData, mean(data(endl:end))];
end

多项误差温度标定

考虑到将加速度计、陀螺的零偏和标度因数统一进行温度建模,那么可以认为加速度、角速度测量误差为陀螺输出电压 V、器件温度 Ti、器件温度变化率 Ti、环境温度 To 和环境温度变化率 ∆To 的函数,即 ω=g(Vg,Ti,∆Ti,To,∆To);加速度测量误差为加速度计输出电压和温度的函数 a=g(Va,Ti,∆Ti,To,∆To),假设二者都是四输入一输出的高阶多项式,这样就可以转化为多因素回归问题标定. 如果多项式中温度和加速度计、陀螺输出电压和温度最高都取二阶,则多因素回归模型中有21 个因素,加速度计和陀螺相应的模型为:

每个惯性元件温度误差模型中需要标定的参数恰巧为 21 项,总共需要做 21 次完整的标定编排。因此,温度误差模型中温度 T 和输出电压 V 都取二阶。 至于 21 次试验数据是否足够能辨识出 21 项参数,这需要通过试验的结果来验证. 如果标定结果发散,那只能再降低 T 和 V 的阶次。

在处理陀螺、加速度计测量数据时,大多按经验直接选择模型变量进行建模,从统计意义而言这样的模型并不一定是最优的. 一般来说,系统所要求的精度不同,需要的误差模型也不同,随着要求精度的提高,需要考虑的误差模型项数也得增多. 因此,需要对模型方程进行优化,从而使 MIMU 的测量模型更趋合理. 从统计学角度出发,对实验数据的处理,应采用 一种有效的方法从众多的影响因素中,挑选对响应 变量贡献大的因素,从而建立最优模型. 由于复相关系数反映了响应变量与回归变量之间的密切程度,因此可以把 R2值最大作为寻优条件来选择自变量,以此选择最优变量,从而建立最优回归方程。

在对加速度计、陀螺温度误差模型进行优化时,考虑到程序设计的简便性和计算量等因素采用逐步回归分析方法,得IMU的加速度计和陀螺分段优化模型(以X轴为例)。

该方法利用R2值来裁剪参数,是一个可以借鉴的方法,具体还未测试过。

参考文献:

MEMS 惯性测量组件的温度误差补偿模型研究

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/43793.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

向github远程仓库中push,要求使用token登录

Support for password authentication was removed on August 13, 2021. Please use a personal access token instead. 如上,当向github远程仓库push时,输入github的用户名和密码出现如上错误,要求使用token登录,此时只需要用户…

SpringBoot + MyBatisPlus 实现多租户分库

一、引言 在如今的软件开发中,多租户(Multi-Tenancy)应用已经变得越来越常见。多租户是一种软件架构技术,它允许一个应用程序实例为多个租户提供服务。每个租户都有自己的数据和配置,但应用程序实例是共享的。而在我们的Spring Boot MyBati…

Celery,一个实时处理的 Python 分布式系统

大家好!我是爱摸鱼的小鸿,关注我,收看每期的编程干货。 一个简单的库,也许能够开启我们的智慧之门, 一个普通的方法,也许能在危急时刻挽救我们于水深火热, 一个新颖的思维方式,也许能…

【高校科研前沿】中国农业大学姚晓闯老师等人在农林科学Top期刊发表长篇综述:深度学习在农田识别中的应用

文章简介 论文名称:Deep learning in cropland field identification: A review(深度学习在农田识别中的应用:综述) 第一作者及单位:Fan Xu(中国农业大学土地科学与技术学院) 通讯作者及单位&…

39 线程库

目录 thread类的简单介绍线程函数参数锁线程交替打印原子性操作库无锁CAS智能指针的线程安全单例模式的线程安全 1. thread类的简单介绍 在c11之前,涉及到多线程问题,都是和平台相关的,如windows和linux下各有自己的接口,这使得…

PTA - sdut-使用函数求a+aa+aaa++⋯+aa.....aaa(n个a)之和

题目描述: 给定两个均不超过9的正整数a和n,要求:编写函数fn(a,n), 求aaaaaa⋯aa⋯aa(n个a)之和,fn须返回的是数列之和。 函数接口定义: def fn(a,n):其中, a 和 n 都是传入的参数…

《RWKV》论文笔记

原文出处 [2305.13048] RWKV: Reinventing RNNs for the Transformer Era (arxiv.org) 原文笔记 What RWKV(RawKuv):Reinventing RNNs for the Transformer Era 本文贡献如下: 提出了 RWKV 网络架构,结合了RNNS 和Transformer 的优点,同…

Java文件操作和IO的小案例

文章目录 案例1案例2案例3 案例1 要求: 扫描指定目录,并找到名称中包含指定字符的所有普通文件(不包含目录),并且后续询问用户是否要删除该文件。 代码实现: package shixun;import java.io.File; import…

动手学深度学习54 循环神经网络

动手学深度学习54 循环神经网络 1. 循环神经网络RNN2. QA 1. 循环神经网络RNN h t h_t ht​ 与 h t − 1 h_{t-1} ht−1​ x t − 1 x_{t-1} xt−1​有关 x t x_t xt​ 与 h t h_t ht​ x t − 1 x_{t-1} xt−1​ 有关 怎么把潜变量变成RNN–假设更简单 潜变量和隐变量的区…

【动态规划Ⅴ】二维数组的动态规划——0/1矩阵、最大正方形

二维数组的动态规划——0/1矩阵、最大正方形 最大正方形1277. 统计全为 1 的正方形子矩阵221. 最大正方形 01矩阵542. 01 矩阵 最大正方形 下面两个题目是非常相似的,只是一个统计正方形数目,一个统计最大正方形的面积。 1277. 统计全为 1 的正方形子矩…

打卡第7天-----哈希表

继续坚持✊,我现在看到leetcode上的题不再没有思路了,真的是思路决定出路,在做题之前一定要把思路梳理清楚。 一、四数相加 leetcode题目编号:第454题.四数相加II 题目描述: 给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j…

RoPE旋转位置编码从复数到欧拉公式

第二部分 从复数到欧拉公式 先复习下复数的一些关键概念 我们一般用表示复数,实数a叫做复数的实部,实数b叫做复数的虚部 复数的辐角是指复数在复平面上对应的向量和正向实数轴所成的有向角 的共轭复数定义为:,也可记作&#xff0…

AI发展的新方向:从卷模型到卷应用

在2024年7月4日于上海世博中心举办的世界人工智能大会暨人工智能全球治理高级别会议全体会议上,百度创始人、董事长兼首席执行官李彦宏发表了一段引人深思的演讲。他在产业发展主论坛上提出:“大家不要卷模型,要卷应用!”这句话道…

对象存储-MinIO-学习-01-安装部署

目录 一、介绍 二、环境信息 三、下载安装包 1、MinIO官网下载地址 2、选择版本 (1)MinIO Server (2)MinIO Client (3)MinIO SDK 四、MinIO SDK安装步骤 1、安装minio库 2、导入minio库报错&…

docker笔记1

docker笔记1 一、为什么要学docker?二、docker是什么三、docker安装 一、为什么要学docker? 在过去,开发人员编写的代码在不同的环境中运行时常常面临一些问题,例如“在我的机器上可以运行,但在你的机器上却不行”的情况。这种问题部分原因…

2024全网最全面及最新且最为详细的网络安全技巧五 之 SSRF 漏洞EXP技巧,典例分析以及 如何修复 (下册)———— 作者:LJS

五.SSRF 漏洞EXP技巧,典例分析以及 如何修复 (下册) 目录 五.SSRF 漏洞EXP技巧,典例分析以及 如何修复 (下册) 5.4gopher 协议初探 0x01 Gopher协议 0x02 协议访问学习 复现环境 centos7 kali 2018 发送http get请求 发送http post请求 5.5 SSRF…

isaac sim 与 WLS2 ros2实现通信

Omniverse以及isaac还是windows下使用顺手一点,但是做跟ros相关的开发时候,基本就得迁移到ubuntu下了,windows下ros安装还是过于复杂,那不想用双系统或者ubuntu或者虚拟机,有啥别的好方法呢?这里想到了wind…

安全求交集PSI

安全求交集定义 求交集的PSI:交集可以被两方看见或其中一方看见,非交集进行保护有两方的PSI半诚实的PSI:攻击者要严格遵守协议,在此基础上得到他人的秘密是做不到的 Two-Party Semi-Honest PSI 挑战一:隐藏非交集元素…

软件测试之冒烟测试

🍅 视频学习:文末有免费的配套视频可观看 🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 1. 核心 冒烟测试就是完成一个新版本的开发后,对该版本最基本的功能进行测试&#x…

使用树莓派进行python开发,控制电机的参考资料

网站连接:https://www.cnblogs.com/kevenduan?page1 1、简洁的过程步骤, 2、有代码示例, 3、有注意事项,