39 线程库

目录

  1. thread类的简单介绍
  2. 线程函数参数
  3. 线程交替打印
  4. 原子性操作库
  5. 无锁CAS
  6. 智能指针的线程安全
  7. 单例模式的线程安全

1. thread类的简单介绍

在c++11之前,涉及到多线程问题,都是和平台相关的,如windows和linux下各有自己的接口,这使得代码的可移植性差。c++11中最重要的特性就是对线程支持,使得c++在并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库的线程,必须包含头文件。C++11线程类
在这里插入图片描述

函数名功能
thread()构造一个线程对象,没有关联任何线程函数,即没有启动任何线程
thread(fn, args1, args2, …)构造一个线程对象,并关联线程函数fn,args1,args2,…为线程函数的参数
get_id获取线程id
jionable()线程是否还在执行,joinable代表的是一个正在执行中的线程
jion()函数调用后会阻塞线程,线程结束后,主线程继续执行
detach()在创建线程对象后马上调用,用于把被创建线程与现场对象分离开,分离的线程变为后台线程,创建的线程的“死活”就与主线程无关

注意:
1.线程是操作系统的一个概念,线程对象可以关联一个线程,用来控制现场以及获取线程的状态
2.当创建线程对象后,没有提供函数,该对象实际没有对应任何线程

#include <thread>int main()
{thread t1;cout << t1.get_id() << endl;return 0;
}

get_id()返回值为id类型,id类型实际为std::thread命名空间下封装的一个类,在该类中包含了一个结构体:
在这里插入图片描述

3.当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。线程函数一般情况下可按照以下三种方式提供:

  • 函数指针
  • lambda表达式
  • 函数对象
  • 包装器
void ThreadFunc(int a)
{cout << "Thread1" << a << endl;
}class TF
{
public:void operator()(){cout << "Thread3" << endl;}
};int main()
{//函数指针thread t1(ThreadFunc, 10);//线程函数lambda表达式thread t2([] {cout << "Thread2" << endl; });//线程函数为函数对象TF tf;thread t3(tf);t1.join();t2.join();t3.join();

4.thiread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个县城对象关联线程的状态转移给其他线程对象,转移期间不影响线程的执行
例:创建10个线程同时打印,不能用for,线程会结束

void Func(int x, const string& str)
{for (size_t i = 0; i < x; i++){cout << str << endl;}
}
vector<thread> vthd(10);
int i = 0;
for (auto& thd : vthd)
{//移动赋值,匿名对象将亡值thd = thread(Func, 10, "线程" + to_string(i++));
}for (auto& thd : vthd)
{thd.join();
}

将一个线程转移给另一个对象,使用move,也可以swap

thread t1(Func, 1, "线程");
thread t2(move(t1));t2.join();

5.可以通过joinable()函数判断线程是否有效,如果是以下情况,则线程无效:

  • 采用无参构造的线程对象
  • 线程对象的状态已经转移给其他线程对象
  • 线程已经调用join或者detch结束

2. 线程函数参数

线程函数的参数是以值拷贝的方式拷贝到线程栈空间的,因此:即使线程参数为引用类型,线程中修改后也不能修改外部实参,因为其实际引用的是线程中的拷贝,而不是外部实参

想改变参数,可以传指针或者用ref

//vs2022 引用无法做参数
void ThreadFunc1(int& x)
{x += 10;
}void ThreadFunc2(int* x)
{*x = 20;
}// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际
//引用的是线程栈中的拷贝
thread t1(ThreadFunc2, &a);
t1.join();
cout << a << endl;// 如果想要通过形参改变外部实参时,必须借助std::ref()函数
thread t2(ThreadFunc1, ref(a));
t2.join();
cout << a << endl;

a在传入的过程中,为了解析模板参数,实际上引用的是a的一个拷贝,对临时变量做引用编译不过,所以要加ref,中间推演就会推出引用类型。下面是不加的情况
在这里插入图片描述

在这里插入图片描述
像上面一样bar如果不加ref,是一份拷贝

下面两个线程同时对一个局部变量修改的操作

int x = 0;
size_t n1 = 0;
size_t n2 = 0;
cin >> n1 >> n2;thread t1([n1, &x] {for (int i = 0; i < n1; i++){x++;}});
thread t2([n2, &x] {for (int i = 0; i < n2; i++){x++;}});t1.join();
t2.join();
cout << x << endl;

两个线程同时++变量x,当每个线程加10000次,最终的值应该是20000
在这里插入图片描述

两个线程对变量的访问产生了冲突,导致丢失了很多次的++结果。对于这种不一致的情况就需要用到锁

3. 锁

c++11中,总共包含了四个互斥量的种类:
在这里插入图片描述

std::mutex

c++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用的三个函数:
|函数名|函数功能|
|lock()|上锁:锁住互斥量|
|unlock()|解锁:释放对互斥量的所有权|
|try_lock()|尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会阻塞|

注意:当线程函数调用lock(),可能会发生以下三种情况:

  • 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用unlock之前,该线程一直拥有锁
  • 如果当前互斥量被其他线程锁住,则当前的调用线程阻塞
  • 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)

线程调用try_lock()时,可能产生以下三种情况:

  • 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到调用unlock
  • 如果当前互斥量被其他线程锁住,则当前的调用线程返回false,而不是阻塞
  • 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)

std::recursive_mutex

其允许同一个线程对互斥量多次上锁(即递归上锁),来获得互斥量对象的多层所有权,释放互斥量需要调用与该锁层次深度相同的unlock(),除此之外,recursive_mutex的特性和mutex大致相同

std::timed_mutex

比std::mutex多了两个成员函数,try_lock_for(),try_lock_until()
延时需要用sleep_for
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
chrono是一个时间度量类
在这里插入图片描述

  • try_lock_for()
    接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁被阻塞住(与std::mutex的try_lock()不同,try_lock如果被调用时没有获得锁则直接返回false,如果再次期限其他线程释放了锁,则该线程可以获得互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回false
  • try_lock_until()
    接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时,则返回false

std::recusive_timed_mutex

lock_guard

如果在加锁和解锁之间抛了异常,就会导致死锁的问题

void fun()
{if (rand() % 6 == 0){throw exception("异常");}else{cout << "func" << endl;}
}srand(time(0));
int x = 0;
size_t n1 = 0;
size_t n2 = 0;
mutex mtx;
cin >> n1;thread t1([n1, &x, &mtx] {try{for (int i = 0; i < n1; i++){/*LockGuard<mutex> lg(mtx);*/mtx.lock();x++;fun();mtx.unlock();}}catch (const exception& e){cout << e.what() << endl;}});t1.join();
cout << x << endl;

在这里插入图片描述

避免死锁问题,可以采用RAII思想,使用一个类管理锁,出作用域自动解锁

template <class Lock>
class LockGuard
{
public:LockGuard(Lock& lk):_mtx(lk){_mtx.lock();}~LockGuard(){_mtx.unlock();}private:Lock& _mtx;
};thread t1([n1, &x, &mtx] {try{for (int i = 0; i < n1; i++){LockGuard<mutex> lg(mtx);/*mtx.lock();*/x++;fun();/*mtx.unlock();*/}}catch (const exception& e){cout << e.what() << endl;}});

库里面实现了这个类
std::lock_gurad是c++11中定义的模板类,定义如下:

template<class _Mutex>
class lock_guard
{
public:// 在构造lock_gard时,_Mtx还没有被上锁explicit lock_guard(_Mutex& _Mtx): _MyMutex(_Mtx){_MyMutex.lock();}// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁lock_guard(_Mutex& _Mtx, adopt_lock_t): _MyMutex(_Mtx){}~lock_guard() _NOEXCEPT{_MyMutex.unlock();}lock_guard(const lock_guard&) = delete;lock_guard& operator=(const lock_guard&) = delete;
private:_Mutex& _MyMutex;
};

通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行封装,在需要加锁的地方,只需要用上述介绍的任意互斥提实例化一个lock_guard,调用构造函数成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁问题

lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此c++11又提供了unique_lock

unique_lock

与lock_guard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动move赋值)时,unique_lock对象需要传递一个Mutex对象作为它的参数,新创建的unique_lock对象负责传入的Mutex对象的上锁和解锁操作。使用以上类型互斥量实例化unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题

与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数

  • 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
  • 修改操作:移动赋值、交换swap:与另一个unique_lock对象互换所管理的互斥量所有权,释放release:返回它所管理的互斥量对象的指针,并释放所有权
  • 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()与owns_lock()的功能相同、mutex(返回当前unique_lock所管理的互斥量的指针)

lock_guard和unique_lock

4. 两个线程交替打印,一个打印奇数,一个打印偶数

主要考察condition_variable条件变量的使用,linux有讲解,没有大的区别,主要还是面向对象实现,条件变量的文档:https://cplusplus.com/reference/condition_variable/

首先要保证t1线程先运行,然后保证执行的顺序,t1对变量修改后打印,然后t2再操作,接着不断循环。就需要条件变量和锁的配合使用。关键是如何保证t1先运行,就需要一个标记,t1线程刚开始要可以执行,t2则得阻塞住,当t1执行完通知t2后t2才可以执行,这时t1就得阻塞住

int x = 0;
mutex mtx;
condition_variable cod;
bool flag = false;
thread t1([&] {for (size_t i = 0; i < 10; i++){unique_lock<mutex> lock(mtx);if (flag == true)cod.wait(lock);x++;cout << this_thread::get_id() << ":" << x << endl;flag = true;cod.notify_one();}});thread t2([&] {for (size_t i = 0; i < 10; i++){unique_lock<mutex> lock(mtx);if (flag == false)cod.wait(lock);x++;cout << this_thread::get_id() << ":" << x << endl;flag = false;cod.notify_one();}});t1.join();
t2.join();

在这里插入图片描述

解析
分为两个场景,t1先启动和t2先启动

场景1:t1先启动,t2待定
a: t1先启动,抢到锁,falg是false,t1会执行完,然后通知t2
a1: t2如果没启动或者没分到时间片,t1就会将flag改为true,抢到锁后在条件变量阻塞。t2总会启动起来,falg是true,t2会正常运行,当运行完改flag为false后通知t1,在t1执行完之前自己就会再次阻塞。之后不断交替
b1: 如果t2启动了,就会阻塞,t1运行完后会通知t2,然后像上面一样

场景2:t1待定,t2先启动
t2先启动,会阻塞住,一直等待t1运行完毕通知t2,之后正常交替

自旋锁和互斥锁
互斥锁是一个线程获得锁后另一个线程没抢到锁,就切换上下文进入休眠等待呼唤。另一个线程用完锁后就会唤醒开始竞争锁。对于临界区操作很简单的这种会反复唤醒,代价有些大,所以这种情况适合自旋锁

//互斥
int x = 0;
mutex mtx;
thread t1([&] {for (size_t i = 0; i < 10; i++){mtx.lock();x++;mtx.unlock();}});thread t2([&] {for (size_t i = 0; i < 10; i++){mtx.lock();x++;mtx.unlock();}});t1.join();
t2.join();
cout << x << endl;

自旋锁是不断询问,每隔一段时间不断尝试,这种循环加锁就叫(spinlock)
下面修改为类似自旋锁的方式:

//自旋
int x = 0;
mutex mtx;
thread t1([&] {for (size_t i = 0; i < 10; i++){while (!mtx.try_lock()){//出让cputhis_thread::yield();}x++;cout << this_thread::get_id() << ":" << x << endl;mtx.unlock();}});thread t2([&] {for (size_t i = 0; i < 10; i++){while (!mtx.try_lock()){//出让cputhis_thread::yield();}x++;cout << this_thread::get_id() << ":" << x << endl;mtx.unlock();}});t1.join();
t2.join();
cout << x << endl;

5. 原子性操作库

对于上面这种要保护的临界区很少的情况,c++11提供了原子库,可以让操作变成原子的,就解决了问题
多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问题,因为只读操作不会影响到数据,更不会设计到数据的修改,所以所有线程都会获得同样的数据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦

虽然加锁可以解决,但加锁的缺陷:只要一个线程在对sum++时,其他线程就会被阻塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁

因此c++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,c++11引入的原子操作类型,使得线程间数据的同步变得非常高效。需要头文件
在这里插入图片描述

atmoc是类,flag是临时用来保证一个变量的原子的单独操作

在这里插入图片描述

//原子
atomic<int> x = 0;
mutex mtx;
thread t1([&] {for (size_t i = 0; i < 10000; i++){x++;}});thread t2([&] {for (size_t i = 0; i < 10000; i++){x++;}});t1.join();
t2.join();
cout << x << endl;

用printf打印变量得调用函数load()
printf("%d\n", x.load());

在c++11中,不需要对原子类型变量加解锁操作,线程能够对原子类型变量互斥的访问
更为普遍的,使用atomic类模板,定义需要的任意原子类型

atmoic<T> t; // 声明一个类型为T的原子类型变量t

库里重载了很多操作
在这里插入图片描述

注意,原子类型通常属于“资源型”数据,多个线程只能访问单个原子类型的拷贝,因此在c++11中,原子类型只能从模板参数中构造,不允许原子类型进行拷贝构造、移动构造以及operator=等,为了防止意外,标准库已经将拷贝、移动、赋值删掉了

#include <atomic>int main(){atomic<int> a1(0);//atomic<int> a2(a1);    // 编译失败
atomic<int> a2(0);//a2 = a1;               // 编译失败
return 0;}

6. 无锁CAS

atmoic操作的实现在底层是cas
CAS无锁编程就是Compare & Set,或是 Compare & Swap,现在几乎所有的CPU指令都支持CAS的原子操作,X86下对应的是 CMPXCHG 汇编指令

对于这个操作过程的描述就是先看一看内存*reg里的值是不是oldval,如果是的话,则对其赋值newval

int compare_and_swap (int* reg, int oldval, int newval)
{int old_reg_val = *reg;if (old_reg_val == oldval) {*reg = newval;}return old_reg_val;
}

windows的无锁

 InterlockedCompareExchange ( __inout LONG volatile *Target,__in LONG Exchange,__in LONG Comperand);

c++11的无锁

template< class T >
bool atomic_compare_exchange_weak( std::atomic* obj,T* expected, T desired );
template< class T >
bool atomic_compare_exchange_weak( volatile std::atomic* obj,T* expected, T desired );

下面是++操作的原理
在这里插入图片描述

两个线程都先取一下旧值,最后赋值的时候取现值做一下对比,如果不相等则说明已经被另一个线程修改过了,再赋值就会出错。继续重新计算。直到赋值成功就完成了++操作

无锁队列的实现

队列的多线程插入过程中,容易出现一个线程创建了节点链接后被另一个线程覆盖了的情况。因为没有及时更新队尾,还是和之前线程链接的位置一样
在这里插入图片描述

EnQueue(Q, data) //进队列
{//准备新加入的结点数据n = new node();n->value = data;n->next = NULL;do {p = Q->tail; //取链表尾指针的快照} while( CAS(p->next, NULL, n) != TRUE); //while条件注释:如果没有把结点链在尾指针上,再试CAS(Q->tail, p, n); //置尾结点 tail = n;
}

创建节点是线程安全的,因为在各自的栈里,关键在于链接的时候
在这里插入图片描述
p不断取队尾节点,如果是空就退出循环,链接节点到队尾,同时更新队尾。在这个过程中另一个线程取到的队尾不是空,就会重新取。直到可以连接的时候改变队尾

修改++操作
c++11跨平台封装了cax函数

//无锁
atomic<int> x = 0;
thread t1([&] {for (size_t i = 0; i < 10000; i++){int oldx, newx;do{oldx = x;newx = x + 1;} while (!atomic_compare_exchange_weak(&x, &oldx, newx));	}});thread t2([&] {for (size_t i = 0; i < 10000; i++){int oldx, newx;do{oldx = x;newx = x + 1;} while (!atomic_compare_exchange_weak(&x, &oldx, newx));}});t1.join();
t2.join();
cout << x << endl;

7. share_ptr多线程安全

SharedPtr<double> sp(new double(1.1));
thread t1([&] {for (size_t i = 0; i < 10000; i++){SharedPtr<double> copy(sp);}});thread t2([&] {for (size_t i = 0; i < 10000; i++){SharedPtr<double> copy(sp);}});t1.join();
t2.join();
cout << sp.Count() << endl;

两个线程多次拷贝智能指针时,就会出问题。因为有可能对堆上同一个计数加加,这时,就需要用原子库。++会调用原子库的重载

template <class T>
class SharedPtr
{
public:SharedPtr(T* ptr = nullptr):_ptr(ptr),_pcount(new std::atomic<int>(1)){}template <class D>SharedPtr(T* ptr, D del): _ptr(ptr),_pcount(new std::atomic<int>(1)),_del(del){}~SharedPtr(){Release();}SharedPtr(const SharedPtr<T>& sp):_ptr(sp._ptr),_pcount(sp._pcount){(*_pcount)++;}SharedPtr<T>& operator=(const SharedPtr<T>& sp){if (_ptr != sp._ptr){Release();_ptr = sp._ptr;_pcount = sp._pcount;(*_pcount)++;}return *this;}void Release(){if (--(*_pcount) == 0){//std::cout << "delete ptr" << std::endl;_del(_ptr);}}T& operator*(){return *_ptr;}T* operator->(){return _ptr;}int Count() const{return *_pcount;}T* get() const{return _ptr;}private:T* _ptr;//int* _pcount;std::atomic<int>* _pcount;std::function<void(T*)> _del = [](T* ptr) {delete ptr; };
};

智能指针保证了自己是线程安全的,里面维护的资源需要自己保证线程安全

8. 单例模式线程安全

饿汉模式因为main函数之前就初始化了,不存在安全问题。懒汉模式如果多个线程同时创建,有可能创建多个对象,所以要加锁,但这个锁只需要保证第一次,外面再套一层双检查

//懒汉
class Singleton
{
public:static Singleton* GetInstance(){//只保护第一次,双检查if (_instace == nullptr){unique_lock<mutex> lock(_mtx);if (_instace == nullptr){_instace = new Singleton();}}return _instace;}//资源回收class CGarbo{public:CGarbo(){if (_instace){delete _instace;}}};private:Singleton() {};Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;static Singleton* _instace;static mutex _mtx;static CGarbo _garbo;
};Singleton* Singleton::_instace = nullptr;
Singleton::CGarbo _garbo;  //程序结束自动调用析构释放单例对象

懒汉c++11的简单写法

只适用于c++11

//懒汉c++11写法
class Singleton
{
public://提供接口static Singleton& GetInstance(){//第一次调用初始化//c++11之前这个不安全,11之后可以保证局部静态对象初始化是线程安全的,只初始化一次static Singleton inst;return inst;}
private://构造函数私有Singleton(){}//防拷贝Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/43784.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PTA - sdut-使用函数求a+aa+aaa++⋯+aa.....aaa(n个a)之和

题目描述&#xff1a; 给定两个均不超过9的正整数a和n&#xff0c;要求&#xff1a;编写函数fn(a,n)&#xff0c; 求aaaaaa⋯aa⋯aa(n个a&#xff09;之和&#xff0c;fn须返回的是数列之和。 函数接口定义&#xff1a; def fn(a,n):其中&#xff0c; a 和 n 都是传入的参数…

《RWKV》论文笔记

原文出处 [2305.13048] RWKV: Reinventing RNNs for the Transformer Era (arxiv.org) 原文笔记 What RWKV(RawKuv):Reinventing RNNs for the Transformer Era 本文贡献如下&#xff1a; 提出了 RWKV 网络架构&#xff0c;结合了RNNS 和Transformer 的优点&#xff0c;同…

Java文件操作和IO的小案例

文章目录 案例1案例2案例3 案例1 要求&#xff1a; 扫描指定目录&#xff0c;并找到名称中包含指定字符的所有普通文件&#xff08;不包含目录&#xff09;&#xff0c;并且后续询问用户是否要删除该文件。 代码实现&#xff1a; package shixun;import java.io.File; import…

动手学深度学习54 循环神经网络

动手学深度学习54 循环神经网络 1. 循环神经网络RNN2. QA 1. 循环神经网络RNN h t h_t ht​ 与 h t − 1 h_{t-1} ht−1​ x t − 1 x_{t-1} xt−1​有关 x t x_t xt​ 与 h t h_t ht​ x t − 1 x_{t-1} xt−1​ 有关 怎么把潜变量变成RNN–假设更简单 潜变量和隐变量的区…

【动态规划Ⅴ】二维数组的动态规划——0/1矩阵、最大正方形

二维数组的动态规划——0/1矩阵、最大正方形 最大正方形1277. 统计全为 1 的正方形子矩阵221. 最大正方形 01矩阵542. 01 矩阵 最大正方形 下面两个题目是非常相似的&#xff0c;只是一个统计正方形数目&#xff0c;一个统计最大正方形的面积。 1277. 统计全为 1 的正方形子矩…

打卡第7天-----哈希表

继续坚持✊,我现在看到leetcode上的题不再没有思路了,真的是思路决定出路,在做题之前一定要把思路梳理清楚。 一、四数相加 leetcode题目编号:第454题.四数相加II 题目描述: 给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j…

RoPE旋转位置编码从复数到欧拉公式

第二部分 从复数到欧拉公式 先复习下复数的一些关键概念 我们一般用表示复数&#xff0c;实数a叫做复数的实部&#xff0c;实数b叫做复数的虚部 复数的辐角是指复数在复平面上对应的向量和正向实数轴所成的有向角 的共轭复数定义为&#xff1a;&#xff0c;也可记作&#xff0…

AI发展的新方向:从卷模型到卷应用

在2024年7月4日于上海世博中心举办的世界人工智能大会暨人工智能全球治理高级别会议全体会议上&#xff0c;百度创始人、董事长兼首席执行官李彦宏发表了一段引人深思的演讲。他在产业发展主论坛上提出&#xff1a;“大家不要卷模型&#xff0c;要卷应用&#xff01;”这句话道…

对象存储-MinIO-学习-01-安装部署

目录 一、介绍 二、环境信息 三、下载安装包 1、MinIO官网下载地址 2、选择版本 &#xff08;1&#xff09;MinIO Server &#xff08;2&#xff09;MinIO Client &#xff08;3&#xff09;MinIO SDK 四、MinIO SDK安装步骤 1、安装minio库 2、导入minio库报错&…

docker笔记1

docker笔记1 一、为什么要学docker?二、docker是什么三、docker安装 一、为什么要学docker? 在过去&#xff0c;开发人员编写的代码在不同的环境中运行时常常面临一些问题&#xff0c;例如“在我的机器上可以运行&#xff0c;但在你的机器上却不行”的情况。这种问题部分原因…

2024全网最全面及最新且最为详细的网络安全技巧五 之 SSRF 漏洞EXP技巧,典例分析以及 如何修复 (下册)———— 作者:LJS

五.SSRF 漏洞EXP技巧&#xff0c;典例分析以及 如何修复 (下册) 目录 五.SSRF 漏洞EXP技巧&#xff0c;典例分析以及 如何修复 (下册) 5.4gopher 协议初探 0x01 Gopher协议 0x02 协议访问学习 复现环境 centos7 kali 2018 发送http get请求 发送http post请求 5.5 SSRF…

isaac sim 与 WLS2 ros2实现通信

Omniverse以及isaac还是windows下使用顺手一点&#xff0c;但是做跟ros相关的开发时候&#xff0c;基本就得迁移到ubuntu下了&#xff0c;windows下ros安装还是过于复杂&#xff0c;那不想用双系统或者ubuntu或者虚拟机&#xff0c;有啥别的好方法呢&#xff1f;这里想到了wind…

安全求交集PSI

安全求交集定义 求交集的PSI&#xff1a;交集可以被两方看见或其中一方看见&#xff0c;非交集进行保护有两方的PSI半诚实的PSI&#xff1a;攻击者要严格遵守协议&#xff0c;在此基础上得到他人的秘密是做不到的 Two-Party Semi-Honest PSI 挑战一&#xff1a;隐藏非交集元素…

软件测试之冒烟测试

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 1. 核心 冒烟测试就是完成一个新版本的开发后&#xff0c;对该版本最基本的功能进行测试&#x…

使用树莓派进行python开发,控制电机的参考资料

网站连接&#xff1a;https://www.cnblogs.com/kevenduan?page1 1、简洁的过程步骤&#xff0c; 2、有代码示例&#xff0c; 3、有注意事项&#xff0c;

Java PKI Programmer‘s Guide

一、PKI程序员指南概述 PKI Programmer’s Guide Overview Java认证路径API由一系列类和接口组成&#xff0c;用于创建、构建和验证认证路径。这些路径也被称作认证链。实现可以通过基于提供者的接口插入。 这个API基于密码服务提供者架构&#xff0c;这在《Java密码架构参考指…

硬件:CPU和GPU

一、CPU与GPU 二、提升CPU利用率&#xff1a;计组学过的 1、超线程一般是给不一样的任务的计算使用&#xff0c;而非在计算密集型工作中 2、Cpu一次可以计算一个线程&#xff0c;而gpu有多少个绿点一次就能计算多少个线程&#xff0c;Gpu比cpu快是因为gpu它的核多&#xff0c;…

electron src build

编译文档&#xff1a; 构建说明 | Electron 1 下载depot_tools &#xff08;1&#xff09;安装depot_tools用于获取 Chromium 及其依赖项的工具集&#xff1a;地址 WINDOWS Download the depot_tools bundle and extract it somewhere. (2)在 Windows 上&#xff0c;您需要…

小试牛刀--对称矩阵压缩存储

学习贺利坚老师对称矩阵压缩存储 数据结构实践——压缩存储的对称矩阵的运算_计算压缩存储对称矩阵 a 与向量 b 的乘积-CSDN博客 本人解析博客 矩阵存储和特殊矩阵的压缩存储_n阶对称矩阵压缩-CSDN博客 版本更新日志 V1.0: 对老师代码进行模仿 , 我进行名字优化, 思路代码注释 …

扩展任务1:完成页面的布局设计和美化

任务指导 1、参照下图&#xff0c;完成页面的布局和美化设计&#xff1a; 2、实现思路 例如可以通过修改Style样式的方式完成布局调整&#xff0c;具体页面显示样式&#xff0c;需要学生根据自己的喜好和设计自行完成&#xff0c;建议每个学生的页面尽量个性化设计&#xff0…