Day63 图论第七天
prim算法
#include<iostream>
#include<vector>
#include <climits>using namespace std;
int main() {int v, e;int x, y, k;cin >> v >> e;// 填一个默认最大值,题目描述val最大为10000vector<vector<int>> grid(v + 1, vector<int>(v + 1, 10001));while (e--) {cin >> x >> y >> k;// 因为是双向图,所以两个方向都要填上grid[x][y] = k;grid[y][x] = k;}// 所有节点到最小生成树的最小距离vector<int> minDist(v + 1, 10001);// 这个节点是否在树里vector<bool> isInTree(v + 1, false);// 我们只需要循环 n-1次,建立 n - 1条边,就可以把n个节点的图连在一起for (int i = 1; i < v; i++) {// 1、prim三部曲,第一步:选距离生成树最近节点int cur = -1; // 选中哪个节点 加入最小生成树int minVal = INT_MAX;for (int j = 1; j <= v; j++) { // 1 - v,顶点编号,这里下标从1开始// 选取最小生成树节点的条件:// (1)不在最小生成树里// (2)距离最小生成树最近的节点if (!isInTree[j] && minDist[j] < minVal) {minVal = minDist[j];cur = j;}}// 2、prim三部曲,第二步:最近节点(cur)加入生成树isInTree[cur] = true;// 3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)// cur节点加入之后, 最小生成树加入了新的节点,那么所有节点到 最小生成树的距离(即minDist数组)需要更新一下// 由于cur节点是新加入到最小生成树,那么只需要关心与 cur 相连的 非生成树节点 的距离 是否比 原来 非生成树节点到生成树节点的距离更小了呢for (int j = 1; j <= v; j++) {// 更新的条件:// (1)节点是 非生成树里的节点// (2)与cur相连的某节点的权值 比 该某节点距离最小生成树的距离小// 很多录友看到自己 就想不明白什么意思,其实就是 cur 是新加入 最小生成树的节点,那么 所有非生成树的节点距离生成树节点的最近距离 由于 cur的新加入,需要更新一下数据了if (!isInTree[j] && grid[cur][j] < minDist[j]) {minDist[j] = grid[cur][j];}}}// 统计结果int result = 0;for (int i = 2; i <= v; i++) { // 不计第一个顶点,因为统计的是边的权值,v个节点有 v-1条边result += minDist[i];}cout << result << endl;}
kruskal算法
#include <iostream>
#include <vector>
#include <algorithm>using namespace std;// l,r为 边两边的节点,val为边的数值
struct Edge {int l, r, val;
};// 节点数量
int n = 10001;
// 并查集标记节点关系的数组
vector<int> father(n, -1); // 节点编号是从1开始的,n要大一些// 并查集初始化
void init() {for (int i = 0; i < n; ++i) {father[i] = i;}
}// 并查集的查找操作
int find(int u) {return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}// 并查集的加入集合
void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;
}int main() {int v, e;int v1, v2, val;vector<Edge> edges;int result_val = 0;cin >> v >> e;while (e--) {cin >> v1 >> v2 >> val;edges.push_back({v1, v2, val});}// 执行Kruskal算法// 按边的权值对边进行从小到大排序sort(edges.begin(), edges.end(), [](const Edge& a, const Edge& b) {return a.val < b.val;});// 并查集初始化init();// 从头开始遍历边for (Edge edge : edges) {// 并查集,搜出两个节点的祖先int x = find(edge.l);int y = find(edge.r);// 如果祖先不同,则不在同一个集合if (x != y) {result_val += edge.val; // 这条边可以作为生成树的边join(x, y); // 两个节点加入到同一个集合}}cout << result_val << endl;return 0;
}
经典算法