论文复现-基于决策树算法构建银行贷款审批预测模型(金融风控场景)

作者Toby,来源公众号:Python风控模型,基于决策树算法构建银行贷款审批预测模型

目录

1.金融风控论文复现

2.项目背景介绍

3.决策树介绍

4.数据集介绍

5.合规风险提醒

6.技术工具

7.实验过程

7.1导入数据

7.2数据预处理 

7.3数据可视化

7.4特征工程

7.5构建模型

7.6模型评估

8.总结 

1.金融风控论文复现

今天发现有篇经典期刊下载量非常大,有5000多条。Toby老师尝试简单复现一下。

图片

图片

图片

2.项目背景介绍

银行贷款审批预测模型是一种基于机器学习算法的应用,旨在帮助银行提高贷款审批的效率和准确性。该模型利用客户的个人信息、财务状况和贷款申请信息等数据,预测客户的贷款审批结果,即是否批准该客户的贷款申请。

背景介绍:在传统的银行贷款审批流程中,工作人员需要手动审核客户提交的贷款申请资料,这一过程既费时又容易出错。为了提高审批效率、降低风险,许多银行开始引入机器学习模型来辅助贷款审批决策。这些模型可以根据历史数据和客户信息,快速而准确地预测贷款的批准结果,帮助银行更好地管理风险,提高贷款审批的效率和客户体验。

银行贷款审批预测模型的建立需要一定数量的历史贷款数据和客户信息作为训练集,以便模型学习客户的贷款偿还行为和审批决策规律。通过合理地处理和分析这些数据,建立起贷款审批预测模型,银行可以实现更智能化、高效化的贷款审批流程,为客户提供更优质的金融服务。

图片

3.决策树算法介绍

决策树是一种常用的机器学习算法,在分类和回归问题中都有广泛的应用。它通过一系列的规则和条件对数据进行划分,最终形成一棵树状的结构,每个节点表示一个特征属性的判断条件,每个叶子节点表示一个分类结果或回归数值。

下面是决策树算法的主要特点和工作流程:

特点:

  1. 简单直观:决策树易于解释和理解,可以帮助人们了解数据特征之间的关系。

  2. 非参数方法:决策树在建模过程中不需要假设数据的分布,适用于各种类型的数据。

  3. 可处理多类别问题:决策树可以处理多类别分类问题,也可以用于回归问题。

工作流程:

  1. 特征选择:根据不同的特征属性选择一个最优的特征进行数据划分。

  2. 数据划分:根据特征的取值将数据集划分成不同的子集。

  3. 递归构建:对每个子集递归地重复上述过程,直到满足停止条件(如节点中的样本都属于同一类别)。

  4. 剪枝:为了避免过拟合,可以通过剪枝手段对决策树进行优化。

决策树算法通过树状结构直观地描述了数据特征之间的关系,可以有效地处理分类和回归问题。然而,决策树算法也存在容易过拟合的问题,因此在实际应用中常常需要进行适当的调参和优化以提高模型的泛化能力。

图片

4.数据集介绍

"Property Loan"(房屋贷款)数据集通常用于贷款审批预测模型的训练和测试。该数据集包含了一些客户的个人信息和贷款申请信息,以及最终的贷款批准结果,是一个典型的二分类问题数据集。

通常,"Property Loan"数据集可能包含以下类型的特征信息:

  1. Gender(性别):客户的性别,可以是男性或女性。

  2. Marital Status(婚姻状况):客户的婚姻状况,如已婚、未婚、离异等。

  3. Applicant Income(申请人收入):申请人的收入水平。

  4. Loan Amount(贷款金额):客户申请的贷款金额。

  5. Credit History(信用历史):客户的信用历史记录,通常是二分类特征,表示有或没有信用记录。

  6. Property Area(房产所在区域):房产所在的区域,如城市、郊区等。

同时,数据集中的标签(Label)通常是 Loan Approval Status(贷款批准状态),即客户的贷款申请是否最终被批准。

通过"Property Loan"数据集,银行可以利用客户的个人信息和贷款申请信息,训练贷款审批预测模型,实现快速有效地预测客户的贷款审批结果。这有助于提高银行的运营效率,降低风险,并为客户提供更高效的金融服务体验。

5.合规风险提醒

根据巴塞尔协议和国内金融办法规。各位建模人员请注意,对于敏感的金融数据和贷款审批模型的构建,需要遵守相关的法律和规定,并确保数据隐私和安全。建议在实际操作中谨慎处理和使用这些数据,以保护客户的隐私和信息安全。

6.技术工具

Python版本:4

代码编辑器:jupyter notebook/spyder/miniconda

具体安装流程,请参考Toby老师之前文章《Anaconda下载和安装指南》

图片

7.建模实验过程

以下是一个简单的示例代码,展示了如何使用Python中的scikit-learn库构建决策树模型进行银行贷款审批预测:

7.1导入数据

# 导入必要的库import pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.metrics import accuracy_score
# 读取包含客户信息和贷款审批结果的数据集data = pd.read_csv('loan_data.csv')

7.2描述性统计

通过以上代码,您可以轻松地获取"Property Loan"数据集的基本描述性统计信息,包括各个数值型特征的统计指标(如均值、方差、最大值、最小值等)以及类别型特征的频数统计。

import pandas as pd
# 假设数据集已加载到名为 property_loan_data 的 DataFrame 中
# 显示数据集的基本统计信息print(property_loan_data.describe())
# 计算每个类别型特征的频数categorical_features = ['Gender', 'Marital Status', 'Credit History', 'Property Area']for feature in categorical_features:    print(property_loan_data[feature].value_counts())

7.3数据预处理

对于"Property Loan"数据集的数据预处理,常见的步骤包括缺失值处理、特征编码、数据标准化等。以下是一个简单的数据预处理示例代码,假设您已经加载了"Property Loan"数据集到名为property_loan_data的DataFrame中:

import pandas as pdfrom sklearn.preprocessing import LabelEncoderfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import StandardScaler
# 假设数据集已加载到名为 property_loan_data 的 DataFrame 中
# 处理缺失值imputer = SimpleImputer(strategy='mean')  # 使用均值填充缺失值property_loan_data['Loan Amount'] = imputer.fit_transform(property_loan_data[['Loan Amount']])
# 特征编码label_encoder = LabelEncoder()property_loan_data['Gender'] = label_encoder.fit_transform(property_loan_data['Gender'])property_loan_data['Marital Status'] = label_encoder.fit_transform(property_loan_data['Marital Status'])property_loan_data['Property Area'] = label_encoder.fit_transform(property_loan_data['Property Area'])
# 数据标准化scaler = StandardScaler()property_loan_data[['Applicant Income', 'Loan Amount']] = scaler.fit_transform(property_loan_data[['Applicant Income', 'Loan Amount']])
# 打印处理后的数据集print(property_loan_data.head())

在这段代码中,我们演示了如何使用SimpleImputer处理缺失值、使用LabelEncoder进行特征编码、以及使用StandardScaler进行数据标准化。这些步骤有助于准备数据用于机器学习模型的训练。

7.4数据可视化

以下是一个简单的用于可视化"Property Loan"(房屋贷款)数据集的Python代码示例,借助matplotlib和seaborn库来实现数据可视化:

import pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns
# 假设数据集已加载到名为 property_loan_data 的 DataFrame 中
# 柱状图示例:显示贷款批准状态的分布sns.countplot(x='Loan Approval Status', data=property_loan_data)plt.title('Loan Approval Status Distribution')plt.show()
# 散点图示例:显示申请人收入与贷款金额之间的关系plt.figure(figsize=(8, 6))sns.scatterplot(x='Applicant Income', y='Loan Amount', hue='Loan Approval Status', data=property_loan_data)plt.title('Applicant Income vs. Loan Amount')plt.xlabel('Applicant Income')plt.ylabel('Loan Amount')plt.show()
# 箱线图示例:显示贷款金额在不同贷款批准状态下的分布plt.figure(figsize=(8, 6))sns.boxplot(x='Loan Approval Status', y='Loan Amount', data=property_loan_data)plt.title('Loan Amount Distribution by Loan Approval Status')plt.xlabel('Loan Approval Status')plt.ylabel('Loan Amount')plt.show()

这些示例代码将帮助您快速可视化"Property Loan"数据集中的一些重要特征和关系,有助于更好地理解数据和可能的模式。

图片

图片

图片

7.5数据划分

# 提取特征和目标变量X = data.drop('Loan_Status', axis=1)y = data['Loan_Status']
# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

7.6建模

# 构建决策树分类器模型clf = DecisionTreeClassifier()clf.fit(X_train, y_train)

7.7预测

# 在测试集上进行预测y_pred = clf.predict(X_test)

7.8模型验证

# 评估模型准确率accuracy = accuracy_score(y_test, y_pred)print('模型准确率: {:.2f}%'.format(accuracy * 100))

在这段代码中,首先我们导入了需要的库,并读取包含客户信息和贷款审批结果的数据集。然后提取特征和目标变量,并进行训练集和测试集的划分。接着我们构建了决策树分类器模型,并在测试集上进行预测,最后通过准确率评估模型的性能。

图片

混淆矩阵结果

模型准确率整体还不错,有0.82,对逾期的f1分数达到0.89,非常高。当然这是前期快速预测模型的实验结论。Toby老师通过后期模型调优可以显著提升模型性能。

图片

confusionMatrix混淆矩阵是统计学里比较难懂概念。混淆矩阵包含accuracy,recall,precision,f-measure四个指标。

为了让各位学员不再混淆,我用一图读懂混淆矩阵包含accuracy,recall(也叫sensitivity),precision,f-measure四个指标。

图片

更多相关知识请参考Toby老师之前写的文章《confusion matrix混淆矩阵图谱

8.总结

银行贷款审批预测模型项目总结如下:

  1. 项目背景: 该项目旨在开发一个贷款审批预测模型,以帮助银行更高效地评估贷款申请,并降低坏账率。

  2. 数据收集与清洗: 数据集包括贷款申请人的个人信息、财务信息等。在收集数据后,进行数据清洗工作,处理缺失值和异常值。

  3. 特征工程: 对数据进行特征工程处理,包括特征选择、特征变换等,以提取对预测目标最有影响的特征。

  4. 模型选择与训练: 选择合适的机器学习模型,如逻辑回归、随机森林等,进行模型训练,并通过交叉验证进行参数调优。

  5. 模型评估与调优: 使用评价指标如准确率、精确率、召回率、F1值等对模型进行评估,根据评估结果进行模型调优。

  6. 部署与监控: 将训练好的模型部署至实际环境中,与银行的贷款系统进行集成,并建立监控机制,定期检查模型性能。

  7. 结果展示与总结: 展示模型的预测结果,对模型的准确性和稳定性进行总结,并提出后续优化建议和改进方向。

通过以上步骤,银行可以借助贷款审批预测模型提升审批效率,降低风险,提高客户体验。Toby老师利用Property Loan数据集为大家演示了一下大致流程。以后有时间再继续优化丰富此文章。

版权声明:文章来自公众号(python风控模型),未经许可,不得抄袭。遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/42446.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot3+Vue3开发园区管理系统

介绍 在当今快速发展的城市化进程中,高效、智能的园区管理成为了提升居民生活品质、优化企业运营环境的关键。为此,我们精心打造了全方位、一体化的园区综合管理系统,该系统深度融合了园区管理、楼栋管理、楼层管理、房间管理以及车位管理等…

鸿蒙开发:Universal Keystore Kit(密钥管理服务)【明文导入密钥(ArkTS)】

明文导入密钥(ArkTS) 分别以导入AES256与RSA2048密钥为例,具体的场景介绍及支持的算法规格 开发步骤 指定密钥别名keyAlias。 密钥别名的最大长度为64字节。 封装密钥属性集和密钥材料。 密钥属性集同样与密钥生成中指定的密钥属性一致,须包含[HuksKe…

昇思MindSpore学习总结十——ResNet50迁移学习

1、迁移学习 (抄自CS231n Convolutional Neural Networks for Visual Recognition) 在实践中,很少有人从头开始训练整个卷积网络(使用随机初始化),因为拥有足够大小的数据集相对罕见。相反,通常…

【机器学习】机器学习与时间序列分析的融合应用与性能优化新探索

文章目录 引言第一章:机器学习在时间序列分析中的应用1.1 数据预处理1.1.1 数据清洗1.1.2 数据归一化1.1.3 数据增强 1.2 模型选择1.2.1 自回归模型1.2.2 移动平均模型1.2.3 长短期记忆网络1.2.4 卷积神经网络 1.3 模型训练1.3.1 梯度下降1.3.2 随机梯度下降1.3.3 A…

SpringCloud学习Day7:Seata

概念 Seata是一款开源的分布式事务解决方案,致力于在微服务架构下提供高性能和简单易用的分布式事务服务 工作流程 TC以Seata服务器形式独立部署,TM和RM则是以Seata Client的形式集成在微服务中运行

240707_昇思学习打卡-Day19-基于MindSpore通过GPT实现情感分类

240707_昇思学习打卡-Day19-基于MindSpore通过GPT实现情感分类 今天基于GPT实现一个情感分类的功能,假设已经安装好了MindSpore环境。 # 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行!pip…

Mysql数据库索引、事务相关知识

索引 索引是一种特殊的文件,包含着对数据表里所有记录的引用指针。可以对表中的一列或多列创建索引, 并指定索引的类型,各类索引有各自的数据结构实现 查看索引 show index from 表名;创建索引对于非主键、非唯一约束、非外键的字段&#…

基于贝叶斯优化的卷积神经网络-循环神经网络混合模型的的模拟股票时间序列预测(MATLAB R2021B)

将机器学习和深度学习方法运用到股市分析中, 不仅具有一定的理论价值, 也具有一定的实践价值。从理论价值上讲, 中国的量化投资技术(投资观念、方法与决策等)还不够成熟, 尚处在起步阶段, 能够将量化投资技术运用到投资决策中的公司寥寥无几。目前, 国内…

端口被占用,使用小黑框查杀

netstat -ano (查看目前所有被占的端口) netstat -ano|findstr " 8080" 查一下目前被占用的端口号 ,目前我要查的端口号是:8080,注意 后面打8080的时候,要有空格,要不然报错 **task…

Zabbix 的部署和自定义监控内容

前言 一个完整的项目的业务架构包括 客户端 -> 防火墙 -> 负载均衡层(四层、七层 LVS/HAProxy/nginx) -> Web缓存/应用层(nginx、tomcat) -> 业务逻辑层(php/java动态应用服务) -> 数据缓存/持久层(r…

操作系统智能助手OS Copilot评测报告

背景 如果不是朋友告知,我还不知道阿里云推出了【操作系统智能助手OS Copilot】这样一款产品。 我做系统运维的工作还是挺多的,知道系统运维工作的一些痛点;例如: Linux命令繁杂,想全部记住不太可能,多数…

软件测试《用例篇》

测试用例 测试用例的概念 测试用例是被测试人员向被测试系统发起的一组集合,包括测试环境,操作步骤,预期结果,测试数据等 使用测试用例的好处 使用测试用例进行测试的好处主要有:提高测试效率,降低测试的重…

WAWA鱼曲折的大学四年回忆录

声明:本文内容纯属个人主观臆断,如与事实不符,请参考事实 前言: 早想写一下大学四年的总结了,但总是感觉无从下手,不知道从哪里开始写,通过这篇文章主要想做一个记录,并从现在的认…

中国智能制造装备产业发展机遇

导语 大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。 新书《智能物流系统构成与技术实践》 更多的海量【智能制造】相关资料,请到智能制造online知识星球自行下载。 随着全球第四次工业革命的浪潮,智能制造装备产业…

C++ 函数高级——函数的默认参数

函数默认参数 在C中,函数的形参列表中的形参是可以有默认值的 语法:返回值类型 函数名 (参数 默认值){ } 示例: 正确代码: 运行结果:

开源六轴协作机械臂myCobot 280接入GPT4大模型!实现更复杂和智能化的任务

本文已经或者同济子豪兄作者授权对文章进行编辑和转载 引言 随着人工智能和机器人技术的快速发展,机械臂在工业、医疗和服务业等领域的应用越来越广泛。通过结合大模型和多模态AI,机械臂能够实现更加复杂和智能化的任务,提升了人机协作的效率…

盘点当下智能体应用开发的几种形态

现在多智能体系统开发的关注度越来越高了,不光在开发者的圈子热度很高,很多职场人士,甚至是小白也参与其中,因为现在的门槛越来越低了,尤其是,最近特别火的扣子(coze)和百度的appbui…

【TB作品】51单片机 Proteus仿真00016 乒乓球游戏机

课题任务 本课题任务 (联机乒乓球游戏)如下图所示: 同步显示 oo 8个LED ooooo oo ooooo 8个LED 单片机 单片机 按键 主机 从机 按键 设计题目:两机联机乒乓球游戏 图1课题任务示意图 具体说明: 共有两个单片机,每个单片机接8个LED和1 个按键,两个单片机使用串口连接。 (2)单片机…

数据结构学生信息顺序表

主程序 #include "fun.h" int main(int argc, const char *argv[]) { seq_p Screate_seq(); stu data; printf("请问要输入几个学生的数据:"); int n; scanf("%d",&n); while(n--) { prin…

MySQL Binlog详解:提升数据库可靠性的核心技术

文章目录 1. 引言1.1 什么是MySQL Bin Log?1.2 Bin Log的作用和应用场景 2. Bin Log的基本概念2.1 Bin Log的工作原理2.2 Bin Log的三种格式 3. 配置与管理Bin Log3.1 启用Bin Log3.2 配置Bin Log参数3.3 管理Bin Log文件3.4 查看Bin Log内容3.5 使用mysqlbinlog工具…