【机器学习】机器学习与时间序列分析的融合应用与性能优化新探索

在这里插入图片描述
在这里插入图片描述

文章目录

    • 引言
    • 第一章:机器学习在时间序列分析中的应用
      • 1.1 数据预处理
        • 1.1.1 数据清洗
        • 1.1.2 数据归一化
        • 1.1.3 数据增强
      • 1.2 模型选择
        • 1.2.1 自回归模型
        • 1.2.2 移动平均模型
        • 1.2.3 长短期记忆网络
        • 1.2.4 卷积神经网络
      • 1.3 模型训练
        • 1.3.1 梯度下降
        • 1.3.2 随机梯度下降
        • 1.3.3 Adam优化器
      • 1.4 模型评估与性能优化
        • 1.4.1 模型评估指标
        • 1.4.2 超参数调优
        • 1.4.3 增加数据量
        • 1.4.4 模型集成
    • 第二章:时间序列分析的具体案例分析
      • 2.1 股票价格预测
        • 2.1.1 数据预处理
        • 2.1.2 模型选择与训练
        • 2.1.3 模型评估与优化
      • 2.2 气象预报
        • 2.2.1 数据预处理
        • 2.2.2 模型选择与训练
        • 2.2.3 模型评估与优化
    • 第三章:性能优化与前沿研究
      • 3.1 性能优化
        • 3.1.1 特征工程
        • 3.1.2 超参数调优
        • 3.1.3 模型集成
      • 3.2 前沿研究
        • 3.2.1 强化学习在时间序列分析中的应用
        • 3.2.2 联邦学习与隐私保护
        • 3.2.3 自监督学习在时间序列分析中的应用
    • 结语

引言

时间序列分析是统计学和机器学习中的一个重要领域,旨在对时间序列数据进行建模和预测。时间序列数据在金融市场预测、气象预报、经济指标分析和工业设备监测等领域广泛存在。随着深度学习技术的发展,机器学习在时间序列分析中的应用越来越广泛。本文将详细介绍机器学习在时间序列分析中的应用,包括数据预处理、模型选择、模型训练和性能优化。通过具体的案例分析,展示机器学习技术在时间序列分析中的实际应用,并提供相应的代码示例。
在这里插入图片描述

第一章:机器学习在时间序列分析中的应用

1.1 数据预处理

在时间序列分析应用中,数据预处理是机器学习模型成功的关键步骤。时间序列数据通常具有时间依赖性和噪声,需要进行清洗、归一化和数据增强等处理。

1.1.1 数据清洗

数据清洗包括处理缺失值、异常值和噪声等。

import pandas as pd
import numpy as np# 加载时间序列数据
data = pd.read_csv('timeseries_data.csv', index_col='date', parse_dates=True)# 处理缺失值
data.fillna(method='ffill', inplace=True)# 处理异常值
data = data[(np.abs(data - data.mean()) <= (3 * data.std()))]# 去除噪声
data['smoothed'] = data['value'].rolling(window=5).mean()
1.1.2 数据归一化

数据归一化可以消除不同时间序列之间的量纲差异,使模型更容易学习。

from sklearn.preprocessing import MinMaxScaler# 数据归一化
scaler = MinMaxScaler()
data_normalized = scaler.fit_transform(data[['value']])
data['normalized'] = data_normalized
1.1.3 数据增强

数据增强通过对训练数据进行随机变换,如时间平移、缩放等,增加数据的多样性,提高模型的泛化能力。

def add_noise(data, noise_level=0.1):noise = np.random.randn(len(data)) * noise_levelreturn data + noise# 数据增强
data['noisy'] = add_noise(data['normalized'])

1.2 模型选择

在时间序列分析中,常用的机器学习模型包括自回归模型(AR)、移动平均模型(MA)、长短期记忆网络(LSTM)和卷积神经网络(CNN)等。不同模型适用于不同的任务和数据特征,需要根据具体应用场景进行选择。

1.2.1 自回归模型

自回归模型(AR)适用于线性时间序列数据,通过历史数据的线性组合进行预测。

from statsmodels.tsa.ar_model import AutoReg# 训练自回归模型
model = AutoReg(data['value'], lags=5)
model_fit = model.fit()# 预测
predictions = model_fit.predict(start=len(data), end=len(data)+10)
print(predictions)
1.2.2 移动平均模型

移动平均模型(MA)适用于线性时间序列数据,通过历史预测误差的线性组合进行预测。

from statsmodels.tsa.arima_model import ARMA# 训练移动平均模型
model = ARMA(data['value'], order=(0, 5))
model_fit = model.fit(disp=False)# 预测
predictions = model_fit.predict(start=len(data), end=len(data)+10)
print(predictions)
1.2.3 长短期记忆网络

长短期记忆网络(LSTM)适用于处理序列数据,能够捕捉时间序列中的长距离依赖关系,适用于非线性时间序列数据。

from keras.models import Sequential
from keras.layers import LSTM, Dense# 数据准备
def create_dataset(data, look_back=1):X, Y = [], []for i in range(len(data)-look_back-1):a = data[i:(i+look_back), 0]X.append(a)Y.append(data[i + look_back, 0])return np.array(X), np.array(Y)look_back = 3
X, Y = create_dataset(data_normalized, look_back)# 数据分割
X_train, X_test = X[:int(len(X)*0.8)], X[int(len(X)*0.8):]
Y_train, Y_test = Y[:int(len(Y)*0.8)], Y[int(len(Y)*0.8):]# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(look_back, 1)))
model.add(Dense(1))# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')# 训练模型
model.fit(X_train, Y_train, epochs=100, batch_size=1, validation_data=(X_test, Y_test))
1.2.4 卷积神经网络

卷积神经网络(CNN)能够捕捉时间序列中的局部模式,适用于具有局部依赖关系的时间序列数据。

from keras.layers import Conv1D, MaxPooling1D, Flatten# 构建CNN模型
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(look_back, 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(1))# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')# 训练模型
model.fit(X_train, Y_train, epochs=100, batch_size=1, validation_data=(X_test, Y_test))

1.3 模型训练

模型训练是机器学习的核心步骤,通过优化算法最小化损失函数,调整模型参数,使模型在训练数据上表现良好。常见的优化算法包括梯度下降、随机梯度下降和Adam优化器等。

1.3.1 梯度下降

梯度下降通过计算损失函数对模型参数的导数,逐步调整参数,使损失函数最小化。

import numpy as np# 定义损失函数
def loss_function(y_true, y_pred):return np.mean((y_true - y_pred) ** 2)# 梯度下降优化
def gradient_descent(X, y, learning_rate=0.01, epochs=1000):m, n = X.shapetheta = np.zeros(n)for epoch in range(epochs):gradient = (1/m) * X.T.dot(X.dot(theta) - y)theta -= learning_rate * gradientreturn theta# 训练模型
theta = gradient_descent(X_train, Y_train)
1.3.2 随机梯度下降

随机梯度下降在每次迭代中使用一个样本进行参数更新,具有较快的收敛速度和更好的泛化能力。

def stochastic_gradient_descent(X, y, learning_rate=0.01, epochs=1000):m, n = X.shapetheta = np.zeros(n)for epoch in range(epochs):for i in range(m):gradient = X[i].dot(theta) - y[i]theta -= learning_rate * gradient * X[i]return theta# 训练模型
theta = stochastic_gradient_descent(X_train, Y_train)
1.3.3 Adam优化器

Adam优化器结合了动量和自适应学习率的优点,能够快速有效地优化模型参数。

from keras.optimizers import Adam# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error')# 训练模型
model.fit(X_train, Y_train, epochs=100, batch_size=1, validation_data=(X_test, Y_test))

1.4 模型评估与性能优化

模型评估是衡量模型在测试数据上的表现,通过计算模型的均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)等指标,评估模型的性能。性能优化包括调整超参数、增加数据量和模型集成等方法。

1.4.1 模型评估指标

常见的模型评估指标包括均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)等。

from sklearn.metrics import mean_squared_error, mean_absolute_error
import math# 预测
y_pred = model.predict(X_test)# 计算评估指标
mse = mean_squared_error(Y_test, y_pred)
rmse = math.sqrt(mse)
mae = mean_absolute_error(Y_test, y_pred)print(f'MSE: {mse}')
print(f'RMSE: {rmse}')
print(f'MAE: {mae}')
1.4.2 超参数调优

通过网格搜索(Grid Search)和随机搜索(Random Search)等方法,对模型的超参数进行调优,找到最优的参数组合。

from sklearn.model_selection import GridSearchCV# 定义超参数网格
param_grid = {'batch_size': [1, 16, 32],'epochs': [50, 100, 200],'optimizer': ['adam', 'sgd']
}# 网格搜索
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, Y_train)# 输出最优参数
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit(X_train, Y_train, epochs=100, validation_data=(X_test, Y_test))
1.4.3 增加数据量

通过数据增强和采样技术,增加训练数据量,提高模型的泛化能力和预测性能。

from imblearn.over_sampling import SMOTE# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, Y_train)# 训练模型
model.fit(X_resampled, y_resampled, epochs=100, validation_data=(X_test, Y_test))
1.4.4 模型集成

通过模型集成的方法,将多个模型的预测结果进行组合,提高模型的稳定性和预测精度。常见的模型集成方法包括Bagging、Boosting和Stacking等。

from sklearn.ensemble import VotingRegressor# 构建模型集成
ensemble_model = VotingRegressor(estimators=[('ar', AutoReg(data['value'], lags=5)),('ma', ARMA(data['value'], order=(0, 5))),('lstm', model)
])# 训练集成模型
ensemble_model.fit(X_train, Y_train)# 预测与评估
y_pred = ensemble_model.predict(X_test)

第二章:时间序列分析的具体案例分析

2.1 股票价格预测

股票价格预测是时间序列分析中的经典问题,通过分析历史价格数据,预测未来的价格走势。以下是股票价格预测的具体案例分析。

2.1.1 数据预处理

首先,对股票价格数据进行预处理,包括数据清洗、归一化和数据增强。

# 加载股票价格数据
data = pd.read_csv('stock_prices.csv', index_col='date', parse_dates=True)# 数据清洗
data.fillna(method='ffill', inplace=True)# 数据归一化
scaler = MinMaxScaler()
data_normalized = scaler.fit_transform(data[['close']])
data['normalized'] = data_normalized# 数据增强
data['noisy'] = add_noise(data['normalized'])
2.1.2 模型选择与训练

选择合适的模型进行训练,这里以LSTM为例。

# 数据准备
look_back = 3
X, Y = create_dataset(data_normalized, look_back)# 数据分割
X_train, X_test = X[:int(len(X)*0.8)], X[int(len(X)*0.8):]
Y_train, Y_test = Y[:int(len(Y)*0.8)], Y[int(len(Y)*0.8):]# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(look_back, 1)))
model.add(Dense(1))# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')# 训练模型
model.fit(X_train, Y_train, epochs=100, batch_size=1, validation_data=(X_test, Y_test))
2.1.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
y_pred = model.predict(X_test)
mse = mean_squared_error(Y_test, y_pred)
rmse = math.sqrt(mse)
mae = mean_absolute_error(Y_test, y_pred)print(f'MSE: {mse}')
print(f'RMSE: {rmse}')
print(f'MAE: {mae}')# 超参数调优
param_grid = {'batch_size': [1, 16, 32],'epochs': [50, 100, 200],'optimizer': ['adam', 'sgd']
}
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, Y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit(X_train, Y_train, epochs=100, validation_data=(X_test, Y_test))# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, Y_train)
model.fit(X_resampled, y_resampled, epochs=100, validation_data=(X_test, Y_test))

2.2 气象预报

气象预报通过分析历史气象数据,预测未来的天气变化,广泛应用于农业、交通和防灾减灾等领域。以下是气象预报的具体案例分析。

2.2.1 数据预处理
# 加载气象数据
data = pd.read_csv('weather_data.csv', index_col='date', parse_dates=True)# 数据清洗
data.fillna(method='ffill', inplace=True)# 数据归一化
scaler = MinMaxScaler()
data_normalized = scaler.fit_transform(data[['temperature']])
data['normalized'] = data_normalized# 数据增强
data['noisy'] = add_noise(data['normalized'])
2.2.2 模型选择与训练

选择合适的模型进行训练,这里以CNN为例。

# 数据准备
look_back = 3
X, Y = create_dataset(data_normalized, look_back)# 数据分割
X_train, X_test = X[:int(len(X)*0.8)], X[int(len(X)*0.8):]
Y_train, Y_test = Y[:int(len(Y)*0.8)], Y[int(len(Y)*0.8):]# 构建CNN模型
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(look_back, 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(1))# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')# 训练模型
model.fit(X_train, Y_train, epochs=100, batch_size=1, validation_data=(X_test, Y_test))
2.2.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
y_pred = model.predict(X_test)
mse = mean_squared_error(Y_test, y_pred)
rmse = math.sqrt(mse)
mae = mean_absolute_error(Y_test, y_pred)print(f'MSE: {mse}')
print(f'RMSE: {rmse}')
print(f'MAE: {mae}')# 超参数调优
param_grid = {'batch_size': [1, 16, 32],'epochs': [50, 100, 200],'optimizer': ['adam', 'sgd']
}
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, Y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit(X_train, Y_train, epochs=100, validation_data=(X_test, Y_test))# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, Y_train)
model.fit(X_resampled, y_resampled, epochs=100, validation_data=(X_test, Y_test))

第三章:性能优化与前沿研究

3.1 性能优化

3.1.1 特征工程

通过特征选择、特征提取和特征构造,优化模型的输入,提高模型的性能。

from sklearn.feature_selection import SelectKBest, f_classif# 特征选择
selector = SelectKBest(score_func=f_classif, k=10)
X_selected = selector.fit_transform(X, y)
3.1.2 超参数调优

通过网格搜索和随机搜索,找到模型的最优超参数组合。

from sklearn.model_selection import RandomizedSearchCV# 随机搜索
param_dist = {'n_estimators': [50, 100, 150],'max_depth': [3, 5,7, 10],'min_samples_split': [2, 5, 10]
}
random_search = RandomizedSearchCV(estimator=RandomForestClassifier(), param_distributions=param_dist, n_iter=10, cv=5, scoring='accuracy')
random_search.fit(X_train, y_train)
best_params = random_search.best_params_
print(f'Best parameters: {best_params}')# 使用最优参数训练模型
model = RandomForestClassifier(**best_params)
model.fit(X_train, y_train)# 预测与评估
y_pred = model.predict(X_test)
3.1.3 模型集成

通过模型集成,提高模型的稳定性和预测精度。

from sklearn.ensemble import StackingRegressor# 构建模型集成
stacking_model = StackingRegressor(estimators=[('ar', AutoReg(data['value'], lags=5)),('ma', ARMA(data['value'], order=(0, 5))),('lstm', model)
])# 训练集成模型
stacking_model.fit(X_train, Y_train)# 预测与评估
y_pred = stacking_model.predict(X_test)

3.2 前沿研究

3.2.1 强化学习在时间序列分析中的应用

强化学习通过与环境的交互,不断优化策略,在动态系统和实时决策中具有广泛的应用前景。

3.2.2 联邦学习与隐私保护

联邦学习通过在不交换数据的情况下进行联合建模,保护用户数据隐私,提高时间序列分析系统的安全性和公平性。

3.2.3 自监督学习在时间序列分析中的应用

自监督学习通过生成伪标签进行训练,提高模型的表现,特别适用于无监督数据的大规模训练。

结语

机器学习作为时间序列分析领域的重要技术,已经在多个应用场景中取得了显著的成果。通过对数据的深入挖掘和模型的不断优化,机器学习技术将在时间序列分析中发挥更大的作用,推动预测与决策技术的发展。

以上是对机器学习在时间序列分析中的理论、算法与实践的全面介绍,希望能够为从事相关研究和应用的人员提供有益的参考。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/42438.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloud学习Day7:Seata

概念 Seata是一款开源的分布式事务解决方案&#xff0c;致力于在微服务架构下提供高性能和简单易用的分布式事务服务 工作流程 TC以Seata服务器形式独立部署&#xff0c;TM和RM则是以Seata Client的形式集成在微服务中运行

240707_昇思学习打卡-Day19-基于MindSpore通过GPT实现情感分类

240707_昇思学习打卡-Day19-基于MindSpore通过GPT实现情感分类 今天基于GPT实现一个情感分类的功能&#xff0c;假设已经安装好了MindSpore环境。 # 该案例在 mindnlp 0.3.1 版本完成适配&#xff0c;如果发现案例跑不通&#xff0c;可以指定mindnlp版本&#xff0c;执行!pip…

Mysql数据库索引、事务相关知识

索引 索引是一种特殊的文件&#xff0c;包含着对数据表里所有记录的引用指针。可以对表中的一列或多列创建索引&#xff0c; 并指定索引的类型&#xff0c;各类索引有各自的数据结构实现 查看索引 show index from 表名;创建索引对于非主键、非唯一约束、非外键的字段&#…

基于贝叶斯优化的卷积神经网络-循环神经网络混合模型的的模拟股票时间序列预测(MATLAB R2021B)

将机器学习和深度学习方法运用到股市分析中, 不仅具有一定的理论价值, 也具有一定的实践价值。从理论价值上讲, 中国的量化投资技术&#xff08;投资观念、方法与决策等&#xff09;还不够成熟, 尚处在起步阶段, 能够将量化投资技术运用到投资决策中的公司寥寥无几。目前, 国内…

端口被占用,使用小黑框查杀

netstat -ano &#xff08;查看目前所有被占的端口&#xff09; netstat -ano|findstr " 8080" 查一下目前被占用的端口号 &#xff0c;目前我要查的端口号是&#xff1a;8080&#xff0c;注意 后面打8080的时候&#xff0c;要有空格&#xff0c;要不然报错 **task…

Zabbix 的部署和自定义监控内容

前言 一个完整的项目的业务架构包括 客户端 -> 防火墙 -> 负载均衡层&#xff08;四层、七层 LVS/HAProxy/nginx&#xff09; -> Web缓存/应用层&#xff08;nginx、tomcat&#xff09; -> 业务逻辑层(php/java动态应用服务) -> 数据缓存/持久层&#xff08;r…

操作系统智能助手OS Copilot评测报告

背景 如果不是朋友告知&#xff0c;我还不知道阿里云推出了【操作系统智能助手OS Copilot】这样一款产品。 我做系统运维的工作还是挺多的&#xff0c;知道系统运维工作的一些痛点&#xff1b;例如&#xff1a; Linux命令繁杂&#xff0c;想全部记住不太可能&#xff0c;多数…

软件测试《用例篇》

测试用例 测试用例的概念 测试用例是被测试人员向被测试系统发起的一组集合&#xff0c;包括测试环境&#xff0c;操作步骤&#xff0c;预期结果&#xff0c;测试数据等 使用测试用例的好处 使用测试用例进行测试的好处主要有&#xff1a;提高测试效率&#xff0c;降低测试的重…

WAWA鱼曲折的大学四年回忆录

声明&#xff1a;本文内容纯属个人主观臆断&#xff0c;如与事实不符&#xff0c;请参考事实 前言&#xff1a; 早想写一下大学四年的总结了&#xff0c;但总是感觉无从下手&#xff0c;不知道从哪里开始写&#xff0c;通过这篇文章主要想做一个记录&#xff0c;并从现在的认…

中国智能制造装备产业发展机遇

导语 大家好&#xff0c;我是社长&#xff0c;老K。专注分享智能制造和智能仓储物流等内容。 新书《智能物流系统构成与技术实践》 更多的海量【智能制造】相关资料&#xff0c;请到智能制造online知识星球自行下载。 随着全球第四次工业革命的浪潮&#xff0c;智能制造装备产业…

C++ 函数高级——函数的默认参数

函数默认参数 在C中&#xff0c;函数的形参列表中的形参是可以有默认值的 语法&#xff1a;返回值类型 函数名 &#xff08;参数 默认值&#xff09;{ } 示例&#xff1a; 正确代码&#xff1a; 运行结果&#xff1a;

开源六轴协作机械臂myCobot 280接入GPT4大模型!实现更复杂和智能化的任务

本文已经或者同济子豪兄作者授权对文章进行编辑和转载 引言 随着人工智能和机器人技术的快速发展&#xff0c;机械臂在工业、医疗和服务业等领域的应用越来越广泛。通过结合大模型和多模态AI&#xff0c;机械臂能够实现更加复杂和智能化的任务&#xff0c;提升了人机协作的效率…

盘点当下智能体应用开发的几种形态

现在多智能体系统开发的关注度越来越高了&#xff0c;不光在开发者的圈子热度很高&#xff0c;很多职场人士&#xff0c;甚至是小白也参与其中&#xff0c;因为现在的门槛越来越低了&#xff0c;尤其是&#xff0c;最近特别火的扣子&#xff08;coze&#xff09;和百度的appbui…

【TB作品】51单片机 Proteus仿真00016 乒乓球游戏机

课题任务 本课题任务 (联机乒乓球游戏)如下图所示: 同步显示 oo 8个LED ooooo oo ooooo 8个LED 单片机 单片机 按键 主机 从机 按键 设计题目:两机联机乒乓球游戏 图1课题任务示意图 具体说明: 共有两个单片机,每个单片机接8个LED和1 个按键,两个单片机使用串口连接。 (2)单片机…

数据结构学生信息顺序表

主程序 #include "fun.h" int main(int argc, const char *argv[]) { seq_p Screate_seq(); stu data; printf("请问要输入几个学生的数据&#xff1a;"); int n; scanf("%d",&n); while(n--) { prin…

MySQL Binlog详解:提升数据库可靠性的核心技术

文章目录 1. 引言1.1 什么是MySQL Bin Log&#xff1f;1.2 Bin Log的作用和应用场景 2. Bin Log的基本概念2.1 Bin Log的工作原理2.2 Bin Log的三种格式 3. 配置与管理Bin Log3.1 启用Bin Log3.2 配置Bin Log参数3.3 管理Bin Log文件3.4 查看Bin Log内容3.5 使用mysqlbinlog工具…

STM32崩溃问题排查

文章目录 前言1. 问题说明2. STM32&#xff08;Cortex M4内核&#xff09;的寄存器3. 崩溃问题分析3.1 崩溃信息的来源是哪里&#xff1f;3.2 崩溃信息中的每个关键字代表的含义3.3 利用崩溃信息去查找造成崩溃的点3.4 keil5中怎么根据地址找到问题点3.5 keil5上编译时怎么输出…

【NTN 卫星通信】Starlink基于终端用户的测量以及测试概述

1 概述 收集了一些starlink的资料&#xff0c;是基于终端侧部署在野外的一些测试以及测量结果。 2 低地球轨道卫星网络概述 低地球轨道卫星网络(lsn)被认为是即将到来的6G中真正实现全球覆盖的关键基础设施。本文介绍了我们对Starlink端到端网络特征的初步测量结果和观测结果&…

STM32-ADC+DMA

本内容基于江协科技STM32视频学习之后整理而得。 文章目录 1. ADC模拟-数字转换器1.1 ADC模拟-数字转换器1.2 逐次逼近型ADC1.3 ADC框图1.4 ADC基本结构1.5 输入通道1.6 规则组的转换模式1.6.1 单次转换&#xff0c;非扫描模式1.6.2 连续转换&#xff0c;非扫描模式1.6.3 单次…

Tabu Search — 温和介绍

Tabu Search — 温和介绍 目录 Tabu Search — 温和介绍 一、说明 二、什么是禁忌搜索以及我可以在哪里使用它&#xff1f; 三、禁忌搜索原则 四、短期记忆和积极搜索&#xff1a; 五、举例时间 六、结论&#xff1a; 七、参考&#xff1a; 一、说明 最近&#xff0c;我参加了…