如何使用uer做多分类任务

如何使用uer做多分类任务

语料集下载
在这里插入图片描述
找到这里点击即可
里面是这有json文件的
在这里插入图片描述
因此我们对此要做一些处理,将其转为tsv格式

# -*- coding: utf-8 -*-
import json
import csv
import chardet# 检测文件编码
def detect_encoding(file_path):with open(file_path, 'rb') as f:raw_data = f.read()return chardet.detect(raw_data)['encoding']# 输入文件名
input_file = './datasets/iflytek/train.json'
# 输出文件名
output_file = './datasets/iflytek/train.tsv'# 检测输入文件的编码格式
file_encoding = detect_encoding(input_file)# 打开输入的 JSON 文件和输出的 TSV 文件
with open(input_file, 'r', encoding=file_encoding) as json_file, open(output_file, 'w', newline='', encoding='utf-8') as tsv_file:# 准备 TSV 写入器tsv_writer = csv.writer(tsv_file, delimiter='\t')# 写入表头(列表['label', 'label_des', 'sentence']中要注意根据json文件中的键值做更换)tsv_writer.writerow(['label', 'label_des', 'sentence'])# 逐行读取 JSON 文件for line in json_file:try:# 解析每一行的 JSON 数据json_data = json.loads(line.strip())# 写入到 TSV 文件中,(列表['label', 'label_des', 'sentence']中要注意根据json文件中的键值做更换)tsv_writer.writerow([json_data['label'], json_data['label_des'], json_data['sentence']])except json.JSONDecodeError as e:print(f"无法解析的行: {line.strip()}")print(f"错误信息: {e}")print(f"JSON 文件已成功转换为 TSV 文件,输入文件编码: {file_encoding}")

接着呢要把所有tsv文件的sentence表头名改成text_a,不然运行uer框架会报错,原因请看源代码逻辑

def read_dataset(args, path):dataset, columns = [], {}with open(path, mode="r", encoding="utf-8") as f:for line_id, line in enumerate(f):if line_id == 0:for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):columns[column_name] = icontinueline = line.rstrip("\r\n").split("\t")tgt = int(line[columns["label"]])if args.soft_targets and "logits" in columns.keys():soft_tgt = [float(value) for value in line[columns["logits"]].split(" ")]if "text_b" not in columns:  # Sentence classification.text_a = line[columns["text_a"]]src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])seg = [1] * len(src)else:  # Sentence-pair classification.text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN])src = src_a + src_bseg = [1] * len(src_a) + [2] * len(src_b)if len(src) > args.seq_length:src = src[: args.seq_length]seg = seg[: args.seq_length]if len(src) < args.seq_length:PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]src += [PAD_ID] * (args.seq_length - len(src))seg += [0] * (args.seq_length - len(seg))if args.soft_targets and "logits" in columns.keys():dataset.append((src, tgt, seg, soft_tgt))else:dataset.append((src, tgt, seg))return dataset

这里规定好了表头名只有label,text_a,text_b
搞完之后进入训练代码,我的显存只有16G,因此

python finetune/run_classifier.py --pretrained_model_path models/cluecorpussmall_roberta_wwm_large_seq512_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/large_config.json --train_path datasets/iflytek/train.tsv --dev_path datasets/iflytek/dev.tsv --output_model_path models/iflytek_classifier_model.bin --epochs_num 3 --batch_size 16 --seq_length 128

在这里插入图片描述
在这里插入图片描述
这里可以看到只有61.49的正确率,其实是因为显存还不够,训练不了那么大的,标准的参数应该设置为batch_size=32 seq_length=256
有能力的可以更改参数进行训练
接着来预测

python inference/run_classifier_infer.py --load_model_path models/iflytek_classifier_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/large_config.json --test_path datasets/iflytek/test.tsv --prediction_path datasets/iflytek/prediction.tsv --seq_length 256 --labels_num 119

在这里插入图片描述
最后自行查看预测效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/41813.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vatee万腾平台:智能生活的新选择

在科技飞速发展的今天&#xff0c;智能生活已经不再是遥不可及的梦想&#xff0c;而是逐渐渗透到我们日常生活的方方面面。Vatee万腾平台&#xff0c;作为智能科技领域的佼佼者&#xff0c;正以其创新的技术、丰富的应用场景和卓越的用户体验&#xff0c;成为智能生活的新选择&…

vue学习笔记(购物车小案例)

用一个简单的购物车demo来回顾一下其中需要注意的细节。 先看一下最终效果 功能&#xff1a; &#xff08;1&#xff09;全选按钮和下面的商品项的选中状态同步&#xff0c;当下面的商品全部选中时&#xff0c;全选勾选&#xff0c;反之&#xff0c;则不勾选。 &#xff08…

51单片机嵌入式开发:2、STC89C52操作GPIO口LED灯

STC89C52操作GPIO口LED灯 1 芯片介绍1.1 芯片类型1.2 芯片系列说明 2 GPIO引脚寄存器说明3 GPIO操作3.1 GPIO输入3.2 GPIO输出3.3 GPIO流水灯3.4 Protues仿真 4 总结 1 芯片介绍 1.1 芯片类型 芯片采用宏晶科技品牌下的STC89C52RC单片机 选择STC89C52RC系列STC89C58RD系列单片…

Pycharm远程连接GPU(内容:下载安装Pycharm、GPU租借、配置SSH、将代码同步到镜像、命令行操控远程镜像、配置远程GPU解释器)

目录 windows下载安装pycharmGPU租借网站AutoDlfeaturize好易智算 GPU租借GPU选择选择镜像充值 然后创建镜像创建成功 复制SSH登录信息 远程进入镜像 在Pycharm中进行ssh连接新建SFTP配置SSH复制ssh根据复制的信息填写ssh配置测试连接 将代码同步到远程镜像上设置mappings将本地…

大语言模型与知识图谱结合发展方向

引言 在人工智能的发展历程中&#xff0c;大语言模型&#xff08;LLM&#xff09;的出现标志着一个重要的转折点。随着深度学习技术的突破和计算能力的提升&#xff0c;LLM以其前所未有的规模和复杂性&#xff0c;开启了迈向人工通用智能&#xff08;AGI&#xff09;的新浪潮。…

STM32利用FreeRTOS实现4个led灯同时以不同的频率闪烁

在没有接触到FreeRTOS时&#xff0c;也没有想过同时叫两个或两个以上的led灯闪烁的想法&#xff0c;接触后&#xff0c;发现如果想叫两个灯同时以不同的频率闪烁&#xff0c;不能说是不可能&#xff0c;就算是做到了也要非常的麻烦。但是学习了FreeRTOS后&#xff0c;发现要想同…

使用WinSCP工具连接Windows电脑与Ubuntu虚拟机实现文件共享传输

一。环境配置 1.首先你的Windows电脑上安装了VMware虚拟机&#xff0c;虚拟机装有Ubuntu系统&#xff1b; 2.在你的windows电脑安装了WinSCP工具&#xff1b; 3.打开WinSCP工具默认是这样 二。设置WinSCP连接 打开WinSCP&#xff0c;点击新标签页&#xff0c;进入到如下图的…

【学术会议征稿】2024年工业自动化与机器人国际学术会议(IAR 2024)

2024年工业自动化与机器人国际学术会议&#xff08;IAR 2024&#xff09; 2024 International Conference on Industrial Automation and Robotics 2024年工业自动化与机器人国际学术会议&#xff08;IAR 2024&#xff09;将于2024年10月18-20日在新加坡隆重召开。会议将围绕…

三丰云评测:免费虚拟主机与免费云服务器的全面对比

三丰云是一家知名的互联网服务提供商&#xff0c;专注于虚拟主机和云服务器的服务。在互联网技术日新月异的今天&#xff0c;选择一个优质的云服务提供商至关重要。本次评测将重点对比三丰云的免费虚拟主机和免费云服务器&#xff0c;帮助用户更好地选择适合自己需求的服务。首…

0 TMS320F28379D 开坑

开坑原因 最近开始做实验&#xff0c;实验室的主控采用的是F2812FPGA&#xff0c;属于够用但不好用的状态。FPGA用于生成调制信号&#xff0c;DSP完成采样和控制。师兄师姐研究拓扑及调制策略&#xff0c;对驱动数量以及驱动逻辑有比较高的要求&#xff0c;因此不好脱离FPGA&a…

CVE-2023-30212(xss漏洞)

简介 OURPHP版本<7.2.0存在XSS漏洞&#xff0c;攻击路径为/client/manage/ourphp_out.php。 过程 打开靶场 访问攻击路径/client/manage/ourphp_out.php 得到flag{354c7c41-cc23-4de5-be73-79cbbf384aba}

Multisim仿真-交流数字电压表

下图为整体的原理框图&#xff0c;交流电源经过整流滤波电路转换后&#xff0c;送入模数转换电路&#xff0c;经译码给到显示电路&#xff0c;由其显示交流电源的有效值。 信号发生器XFG1输出正弦波信号(峰峰值)&#xff0c;XMM1测量有效值&#xff0c;U6数码管显示有效值。仿真…

[BJDCTF 2nd]简单注入

sqlsqlsqlsqlsql又来喽 过滤了单双引号&#xff0c;等于符号&#xff0c;还有select等&#xff0c;但是这里没有二次注入 。扫描发现hint.txt 看出题人的意思是&#xff0c;得到密码即可获得flag。 select * from users where username$_POST["username"] and passw…

认识流式处理框架Apache Flink

目录 一、Apache Flink 的基础概念 1.1 Apache Flink是什么&#xff1f; 1.2 Flink的定义 二、Apache Flink 的发展史 2.1 Flink前身Stratosphere 2.2 Flink发展时间线及重大变更 三、Flink核心特性 3.1 批流一体化 3.2 同时支持高吞吐、低延迟、高性能 3.3 支持事件时…

Git 运用小知识

1.Git添加未完善代码的解决方法 1.1 Git只是提交未推送 把未完善的代码提交到本地仓库 只需点击撤销提交&#xff0c;提交的未完善代码会被撤回 代码显示未提交状态 1.2 Git提交并推送 把未完善的代码提交并推送到远程仓库 点击【未完善提交并推送】的结点选择还原提交&#x…

MinIO - 从 环境搭建 -> SpringBoot实战 -> 演示,掌握 Bucket 和 Object 操作

目录 开始 Docker 部署 MinIO 中的基本概念 SpringBoot 集成 MinIO 依赖 配置 MinIO 时间差问题报错 The difference between the request time and the servers time is too large MinIO 中对 Bucket&#xff08;文件夹&#xff09; 的操作 是否存在 / 创建 查询所有…

Apache Seata 源码分析Seata-XID传递 Dubbo篇

本文来自 Apache Seata官方文档&#xff0c;欢迎访问官网&#xff0c;查看更多深度文章。 本文来自 Apache Seata官方文档&#xff0c;欢迎访问官网&#xff0c;查看更多深度文章。 源码分析 Seata-XID 传递 Dubbo 篇 本文作者&#xff1a;FUNKYE(陈健斌),杭州某互联网公司主…

TQ15EG开发板教程:MPSOC创建fmcomms8工程

链接&#xff1a;https://pan.baidu.com/s/1jbuYs9alP2SaqnV5fpNgyg 提取码&#xff1a;r00c 本例程需要实现在hdl加no-OS系统中&#xff0c;通过修改fmcomms8/zcu102项目&#xff0c;实现在MPSOC两个fmc口上运行fmcomms8项目。 目录 1 下载文件与切换版本 2 编译fmcomms8项…

超越YOLO! RT-DETR 实时目标检测技术介绍

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

免杀笔记 ----> DLL注入

这段时间我们暂时没什么事情干的话我们就继续更新我们的免杀笔记力&#xff01;&#xff01;&#xff01; &#xff1a;今天我们讲DLL注入 目录 1.DLL注入 2.直接加载DLL&#xff1f; 3.远程线程注入 获取Handle 远程申请内存空间 将我们的CS的DLL加载入内存 创建远程线…