C++学习随笔(11)——vector

本章我们来学习一下vector!  

目录

1.vector的介绍及使用

1.1 vector的介绍

1.2 vector的使用

1.2.1 vector的定义

1.2.2 vector iterator 的使用

1.2.3 vector 空间增长问题

1.2.4 vector 增删查改

1.2.5 vector 迭代器失效问题。


1.vector的介绍及使用

1.1 vector的介绍

vector的文档介绍icon-default.png?t=N7T8http://www.cplusplus.com/reference/vector/vector/

1. vector是表示可变大小数组的序列容器。

2. 就像数组一样, vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素  进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自 动处理。

3. 本质讲, vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小 为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是 一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,  vector并不会每次都重新分配大小。

4. vector分配空间策略:  vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存  储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是 对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。

5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增 长。

6. 与其它动态序列容器相比(deque,list and forward_list),vector在访问元素的时候更加高效,在末 尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起listforward_list 统一的迭代器和引用更好。

1.2 vector的使用

vector学习时一定要学会查看文档:  vector的文档介绍 vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的

1.2.1 vector的定义

(constructor)构造函数声明

接口说明

vector()

无参构造

vectorsize_type n, const value_type& val = value_type()

构造并初始化nval

vector (const vector& x);  

拷贝构造

vector (InputIterator first, InputIterator last);

使用迭代器进行初始化构造

代码示例:

int TestVector1()
{// constructors used in the same order as described above:vector<int> first;                                // empty vector of intsvector<int> second(4, 100);                       // four ints with value 100vector<int> third(second.begin(), second.end());  // iterating through secondvector<int> fourth(third);                       // a copy of third// 下面涉及迭代器初始化的部分// the iterator constructor can also be used to construct from arrays:int myints[] = { 16,2,77,29 };vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));cout << "The contents of fifth are:";for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)cout << ' ' << *it;cout << '\n';return 0;
}

1.2.2 vector iterator 的使用

iterator的使用

接口说明

begin+

end 

获取第一个数据位置的iterator/const_iterator , 获取最后一个数据的下一个位置 iterator/const_iterator

rbegin+ rend

获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的 reverse_iterator

代码示例:

//  vector的迭代器void PrintVector(const vector<int>& v)
{// const对象使用const迭代器进行遍历打印vector<int>::const_iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;
}void TestVector2()
{// 使用push_back插入4个数据vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);// 使用迭代器进行遍历打印vector<int>::iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;// 使用迭代器进行修改it = v.begin();while (it != v.end()){*it *= 2;++it;}// 使用反向迭代器进行遍历再打印// vector<int>::reverse_iterator rit = v.rbegin();auto rit = v.rbegin();while (rit != v.rend()){cout << *rit << " ";++rit;}cout << endl;PrintVector(v);
}

1.2.3 vector 空间增长问题

容量空间

接口说明

size

获取数据个数

capacity

获取容量大小

empty

判断是否为空

resize 

改变vectorsize

reserve  

改变vectorcapacity

   (1)capacity的代码在vsg++下分别运行会发现,  vscapacity1.5倍增长的,  g++是按2倍增长的 这个问题经常会考察,不要固化的认为,  vector增容都是2倍,具体增长多少是根据具体的需求定义   的。 vsPJ版本STL g++SGI版本STL

   (2)reserve只负责开辟空间,如果确定知道需要用多少空间,  reserve可以缓解vector增容的代价缺陷问题。

   (3)resize在开空间的同时还会进行初始化,影响size

代码示例:

(1) vector的resize 和 reserve

//  vector的resize 和 reserve// reisze(size_t n, const T& data = T())
// 将有效元素个数设置为n个,如果时增多时,增多的元素使用data进行填充
// 注意:resize在增多元素个数时可能会扩容
void TestVector3()
{vector<int> v;// set some initial content:for (int i = 1; i < 10; i++)v.push_back(i);v.resize(5);v.resize(8, 100);v.resize(12);cout << "v contains:";for (size_t i = 0; i < v.size(); i++)cout << ' ' << v[i];cout << '\n';
}

(2)测试vector的默认扩容机制

// 测试vector的默认扩容机制
// vs:按照1.5倍方式扩容
// linux:按照2倍方式扩容
void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i) {v.push_back(i);if (sz != v.capacity()) {sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128

(3)往vecotr中插入元素时,如果大概已经知道要存放多少个元素

// 往vecotr中插入元素时,如果大概已经知道要存放多少个元素
// 可以通过reserve方法提前将容量设置好,避免边插入边扩容效率低
void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100);   // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i) {v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}
1.2.4 vector 增删查改

vector增删查改

接口说明

push_back 

尾插

pop_back  

尾删

find

查找。(注意这个是算法模块实现,不是vector的成员接口)

insert

position之前插入val

erase

删除position位置的数据

swap

交换两个vector的数据空间

operator[]  

像数组一样访问

代码示例:

(1) 尾插和尾删:push_back/pop_back

// 尾插和尾删:push_back/pop_back
void TestVector4()
{vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);auto it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;v.pop_back();v.pop_back();it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;
}

(2)任意位置插入:insert和erase,以及查找find

// 任意位置插入:insert和erase,以及查找find
// 注意find不是vector自身提供的方法,是STL提供的算法
void TestVector5()
{// 使用列表方式初始化,C++11新语法vector<int> v{ 1, 2, 3, 4 };// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入// 1. 先使用find查找3所在位置// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局findauto pos = find(v.begin(), v.end(), 3);if (pos != v.end()){// 2. 在pos位置之前插入30v.insert(pos, 30);}vector<int>::iterator it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据v.erase(pos);it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;
}

(3)operator[]+index 和 C++11中vector的新式for+auto的遍历

// operator[]+index 和 C++11中vector的新式for+auto的遍历
// vector使用这两种遍历方式是比较便捷的。
void TestVector6()
{vector<int> v{ 1, 2, 3, 4 };// 通过[]读写第0个位置。v[0] = 10;cout << v[0] << endl;// 1. 使用for+[]小标方式遍历for (size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;vector<int> swapv;swapv.swap(v);cout << "v data:";for (size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;// 2. 使用迭代器遍历cout << "swapv data:";auto it = swapv.begin();while (it != swapv.end()){cout << *it << " ";++it;}// 3. 使用范围for遍历for (auto x : v)cout << x << " ";cout << endl;
}

1.2.5 vector 迭代器失效问题。

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了   封装,比如:  vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的 空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(如果继续使用已经失效的迭代器,  程序可能会崩溃)

对于vector可能会导致其迭代器失效的操作有:

(1)会引起其底层空间改变的操作,都有可能是迭代器失效,如:  resize reserve insertassign push_back等。

#include <iostream>
using namespace std;
#include <vector>
int main()
{vector<int> v{1,2,3,4,5,6};auto it = v.begin();// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);/*出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释                放的空间,而引起代码运行时崩溃。解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
赋值即可。*/while(it != v.end()){cout<< *it << " " ;++it;}cout<<endl;return 0;
}

(2)指定位置元素的删除操作--erase

#include <iostream>
using namespace std;
#include <vector>
int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}

erase删除pos位置元素后,  pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代 器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,end位置是 没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,  vs就认为该位置迭代器失效了。

(3) 注意:  Linux下, g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{vector<int> v{1,2,3,4,5};for(size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;auto it = v.begin();cout << "扩容之前,vector的容量为: " << v.capacity() << endl;// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 v.reserve(100);cout << "扩容之后,vector的容量为: " << v.capacity() << endl;// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会// 虽然可能运行,但是输出的结果是不对的while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
int main()
{vector<int> v{1,2,3,4,5};vector<int>::iterator it = find(v.begin(), v.end(), 3);v.erase(it);cout << *it << endl;while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}
程序可以正常运行,并打印:
4
4 5// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{vector<int> v{1,2,3,4,5};// vector<int> v{1,2,3,4,5,6};auto it = v.begin();while(it != v.end()){if(*it % 2 == 0)v.erase(it);++it;}for(auto e : v)cout << e << " ";cout << endl;return 0;
}
========================================================
// 使用第一组数据时,程序可以运行
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
1 3 5
=========================================================
// 使用第二组数据时,程序最终会崩溃
[sly@VM-0-3-centos 20220114]$ vim testVector.cpp
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
Segmentation fault

从上述三个例子中可以看到:  SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在beginend范围内,肯定会崩溃的。

(4) 与vector类似, string在插入+扩容操作+erase之后,迭代器也会失效

#include <string>
void TestString()
{string s("hello");auto it = s.begin();// 放开之后代码会崩溃,因为resize到20会string会进行扩容// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了// 后序打印时,再访问it指向的空间程序就会崩溃//s.resize(20, '!');while (it != s.end()){cout << *it;++it;}cout << endl;it = s.begin();while (it != s.end()){it = s.erase(it);// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后// it位置的迭代器就失效了// s.erase(it); ++it;}
}

 迭代器失效解决办法:在使用前,对迭代器重新赋值即可

本章完!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/4167.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

selenium 自动化测试课上实操指南2——乐视tv搜索

如果完成了实操1的同学&#xff0c;环境搭建已经ok&#xff0c;环境还没有好的同学请参考 实操1_百度搜索 为了大家顺利&#xff0c;我们还想按照实操1那样&#xff0c;先导入一个基本项目。在次基础上进行代码编写、 我们一起写写看。 1.打开乐视视频网页并最大化 如下图所…

三款数据可视化工具深度解析:Tableau、ECharts与山海鲸可视化

在数字化时代&#xff0c;数据可视化工具成为了企业和个人进行数据分析和决策的重要助手。市面上众多数据可视化工具各具特色&#xff0c;本文将为您介绍三款热门的数据可视化工具&#xff0c;帮助您更好地理解和利用数据。 首先&#xff0c;让我们来认识Tableau。Tableau是一款…

matlab学习006-使用matlab绘出系统的冲激响应和阶跃响应波形并求其冲激响应的数值解

目录 题目 1&#xff0c;绘出系统的冲激响应和阶跃响应波形 1&#xff09;基础 2&#xff09;效果 3&#xff09;代码 2&#xff0c;求出t0.5s,1s,1.5s,2s时系统冲激响应的数值解。 1&#xff09;基础 2&#xff09;效果 ​☀ 3&#xff09;代码 题目 已知描述某连续系…

react之渲染与props

第一章描述用户界面 将Props 传递给组件 React 组件使用 props 来互相通信。每个父组件都可以提供 props 给它的子组件&#xff0c;从而将一些信息传递给它。Props 可能会让你想起 HTML 属性&#xff0c;但你可以通过它们传递任何 JavaScript 值&#xff0c;包括对象、数组和…

《苍穹外卖》Day07部分知识点记录

一、菜品缓存 减少查询数据库的次数&#xff0c;优化性能 客户端&#xff1a; package com.sky.controller.user;import com.sky.constant.StatusConstant; import com.sky.entity.Dish; import com.sky.result.Result; import com.sky.service.DishService; import com.sky…

网络安全实训Day16

网络空间安全实训-渗透测试 漏洞扫描 定义 扫描和探测目标范围内的主机存在哪些安全漏洞&#xff0c;或扫描目标范围内的那些主机存在某个指定的漏洞 漏扫工具 AWVS APPScan MSF 使用MSF扫描漏洞并利用 1.搜索需要的攻击模块 search ms17-010 2.使用攻击模块 use 模块名称…

苏州相融大厦安装部署火眼视频图像早期火灾报警系统

2024年3月&#xff0c;苏州高铁数金公司、火眼消防技术有限公司与招商积余物业联合在相融大厦进行了火眼视频图像早期火灾报警系统的部署和测试工作&#xff0c;测试效果良好。体现招商积余对持续推进消防安全工作的高度重视。 相融大厦是火眼消防总部注册和苏州研发中心所在地…

OpenCV直方图计算

返回:OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV实现直方图均衡 下一篇 :OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 在本教程中&#xff0c;您将学习如何&#xff1a; 使用 OpenCV 函数 cv::split 将图像划分…

网络安全实训Day24(End)

写在前面 并没有完整上完四个星期&#xff0c;老师已经趁着清明节假期的东风跑掉了。可以很明显地看出这次持续了“四个星期”实训的知识体系并不完整&#xff0c;内容也只能算是一次基础的“复习”。更多的内容还是靠自己继续自学吧。 网络空间安全实训-渗透测试 文件包含攻击…

用 C 语言进行大模型推理:探索 llama2.c 仓库(一)

文章目录 前提有关huggingface社区chinese-baby-llama2llama2.cexport.py读取模型信息重建模型对重建出的模型初始化权重导出run.c要求的.bin文件 tokenizer.py 一些思考参考链接 前提 最近发现了一个只用c语言就可以推理大模型的仓库llama2.c&#xff0c;作者是openAI的员工。…

把私有数据接入 LLMs:应用程序轻松集成 | 开源日报 No.236

run-llama/llama_index Stars: 29.9k License: MIT llama_index 是用于 LLM 应用程序的数据框架。 该项目解决了如何最佳地利用私有数据增强 LLMs&#xff0c;并提供以下工具&#xff1a; 提供数据连接器&#xff0c;以摄取现有的数据源和各种格式&#xff08;API、PDF、文档…

vite加密打包插件(vite-plugin-javascript-obfuscator)选项(option)详解

本文主要介绍vite加密打包插件(vite-plugin-javascript-obfuscator)选项(option)。 目录 一、选项(option)1. compact2. config3. controlFlowFlattening4. controlFlowFlatteningThreshold5. deadCodeInjection6. deadCodeInjectionThreshold7. debugProtection8.debugProtect…

【每日刷题】Day23

【每日刷题】Day23 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 138. 随机链表的复制 - 力扣&#xff08;LeetCode&#xff09; 2. 链表的回文结构_牛客题霸_牛客网 …

MySQL从入门到高级 --- 2.DDL基本操作

文章目录 第二章&#xff1a;2.基本操作 - DDL2.1 数据库的常用操作创建数据库选择要操作的数据库删除数据库修改数据库编码 2.2 表结构的常用操作创建表格式查看当前数据库的所有表名称查看指定某个表的创建语句查看表结构删除表 2.3 修改表结构添加列修改列名和类型删除列修改…

python之excel加工处理小案例一则

一、工具用途 工作中&#xff0c;需要对各类excel进行加工处理&#xff0c;当表和字段比较多时&#xff0c;关联条件又有多个&#xff0c;每次通过execl的vlookup之类的关联公式手工可以解决工作需求&#xff0c;但一般耗时较长&#xff0c;且人工统计匹配也存在出错的情况。 …

cnpm安装

npm install -g cnpm --registryhttps://registry.npmmirror.com # 注册模块镜像 npm set registry https://registry.npmmirror.com // node-gyp 编译依赖的 node 源码镜像 npm set disturl https://npmmirror.com/dist // 清空缓存 npm cache clean --force // 安装c…

《深入浅出.NET框架设计与实现》笔记6.3——ASP.NET Core应用程序多种运行模式之三——桌面应用程序

ASP.NET Core应用程序可以在多种运行模式下运行&#xff0c;包括自宿主&#xff08;Self-Hosting&#xff09;、IIS服务承载、桌面应用程序、服务承载。 因此选择和时的模式很重要。 桌面应用程序 ASP.NET Core也可以用于构建跨平台的桌面应用程序&#xff0c;利用跨平台界面…

【VUE】提升大数据量场景下el-table组件的性能

提升大数据量场景下el-table组件的性能 在现代Web应用程序开发中&#xff0c;使用Vue和Element UI快速构建高效的用户界面是非常普遍的做法。特别是对于需要展示大量数据的表格组件&#xff08;<el-table>&#xff09;&#xff0c;性能优化成为了不可忽视的关键。本文将…

C#面:泛型有哪些常见约束

C# 泛型提供了一种在编译时对类型进行参数化的方式&#xff0c;可以增加代码的灵活性和重用性。在使用泛型时&#xff0c;可以对泛型参数进行约束&#xff0c;以限制可以传递给泛型类型或方法的类型。 常见的泛型约束有以下几种&#xff1a; 类型约束&#xff08;class&#…