Redis三种模式——主从复制、哨兵模式、集群

一、Redis模式

Redis有三种模式:分别是主从同步/复制哨兵模式Cluster

主从复制:主从复制是高可用Redis的基础,哨兵和群集都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单故障恢复。
缺陷:故障恢复无法自动化,写操作无法负载均衡,存储能力受到单机的限制。
哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。
缺陷:写操作无法负载均衡,存储能力受到单机的限制,哨兵无法对从节点进行自动故障转移;在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

二、Redis主从复制

2.1 主从复制概述

主从复制,是指将一台 Redis 服务器的数据,复制到其他的 Redis 服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台 Redis 服务器都是主节点;且一个主节点可以有多个从节点 (或没有从节点),但一个从节点只能有一个主节点。

2.2 主从复制

数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务 (即写 Redis 数据时应用连接主节点,读 Redis 数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

2.3 Redis主从复制过程

  1. 若启动一个Slave机器进程,则它会向Master机器发送一个“sync command" 命令,请求同步连接。
  2. 无论是第一次连接还是重新连接,Master机器 都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作) ,同时 Master 还会记录修改数据的所有命令并缓存在数据文件中。
  3. 后台进程完成缓存操作之后,Master 机器就会向 Slave 机器发送数据文件,Slave 端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着 Master 机器就会将修改数据的所有操作一并发送给 Slave 端机器。若 Slave 出现故障导致宕机,则恢复正常后会自动重新连接。
  4. Master机器收到 Slave 端机器的连接后,将其完整的数据文件发送给 Slave 端机器,如果 Mater 同时收到多个 Slave 发来的同步请求,则 Master 会在后台启动一个进程以保存数据文件,然后将其发送给所有的 Slave 端机器,确保所有的 Slave 端机器都正常。

2.4 搭建Redis主从复制

2.4-1 环境部署

主机         系统            IP地址            所需安装包
Master节点    CentOS 7    192.168.154.10    redis-5.0.7.tar. gz
Slave1节点    CentOS 7    192.168.154.11    redis-5.0.7.tar. gz
Slave2节点    CentOS 7    192.168.154.12    redis-5.0.7.tar. gz
#三台主机都关闭防火墙和SELINUX
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
#三台节点服务器都修改
#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048sysctl -p



2.4-2 安装Redis

在三台机器上都安装Redis

#三台节点服务器都要安装
yum install -y gcc gcc-c++ maketar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。

#三台节点服务器都要创建
#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/

#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin        #增加一行source /etc/profile



1

#定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true[Install]
WantedBy=multi-user.target


2.4-3 修改 Redis 配置文件(Master节点操作)

#192.168.154.10
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0                                    #87行,修改监听地址为0.0.0.0
protected-mode no                                #111行,将本机访问保护模式设置no
port 6379                                        #138行,Redis默认的监听6379端口
daemonize yes                                    #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid        #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"    #354行,指定日志文件
dir /usr/local/redis/data                        #504行,指定持久化文件所在目录
#requirepass abc123                                #1037行,可选,设置redis密码
appendonly yes                                    #1380行,开启AOFsystemctl restart redis-server.service

 

 2.4-4 修改 Redis 配置文件(Slave节点操作)

#192.168.154.11及192.168.154.12
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0                                    #87行,修改监听地址为0.0.0.0
protected-mode no                                #111行,将本机访问保护模式设置no
port 6379                                        #138行,Redis默认的监听6379端口
daemonize yes                                    #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid        #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"    #354行,指定日志文件
dir /usr/local/redis/data                        #504行,指定持久化文件所在目录
#requirepass abc123                                #1037行,可选,设置redis密码
appendonly yes                                    #1380行,开启AOF
replicaof 192.168.154.10 6379                    #528行,指定要同步的Master节点IP和端口
#masterauth abc123                                #535行,可选,指定Master节点的密码,仅在Master节点设置了requirepasssystemctl restart redis-server.service

2.4-5 验证主从效果

在Master节点上看日志:

tail -f /usr/local/redis/log/redis_6379.log 

在Master节点上验证从节点:

redis-cli info replication

创建数据验证

三、Redis 哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3.1 哨兵模式的作用

  • 监控:哨兵会不断地检查主节点和从节点是否运作正常。
  • 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
  • 通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成哨兵节点数据节点

  • 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
  • 数据节点:主节点和从节点都是数据节点。

3.2 故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障

每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,

此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:

  • 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
  • 若原主节点恢复也变成从节点,并指向新的主节点;
  • 通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

3.3 主节点的选举

  1. 过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
  2. 选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
  3. 选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

3.4 搭建Redis 哨兵模式

Master节点:192.168.154.10
Slave1节点:192.168.154.11
Slave2节点:192.168.154.12

3.4-1 验证主从效果修改 Redis 哨兵模式的配置文件(所有节点操作)

cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf
vim /usr/local/redis/conf/sentinel.confprotected-mode no                                    #6行,关闭保护模式
port 26379                                            #10行,Redis哨兵默认的监听端口
daemonize yes                                        #15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid        #20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"            #25行,指定日志存放路径
dir /usr/local/redis/data                            #54行,指定数据库存放路径
sentinel monitor mymaster 192.168.154.10 6379 2        #73行,修改 指定该哨兵节点监控192.168.154.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123                    #76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000        #114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 1154000            #214行,同一个sentinel对同一个master两次failover之间的间隔时间(1154秒)


3.4-2 启动哨兵模式

先启master,再启slave

cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &

3.4-3 查看哨兵信息

192.168.154.10的master节点查看哨兵信息

redis-cli -p 26379 info Sentinel

3.4-4 故障模拟

查看redis-server进程号

ps -ef | grep redis

杀死 Master 节点上redis-server的进程号

#192.168.154.10
kill -9 63821            #Master节点上redis-server的进程号
#slave3节点查看主节点现在是哪个
redis-cli -p 26379 INFO Sentinel


四、Redis 群集模式

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

4.1 集群的作用

  1. 数据分区:数据分区(或称数据分片)是集群最核心的功能。集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
  2. 高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

4.2 Redis集群的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

4.3 搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

4.3-1 环境部署

192.168.154.10部署Redis

#关闭防火墙和SELINUX
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048sysctl -p


4.3-2 安装Redis

yum install -y gcc gcc-c++ maketar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。



#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/

#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin        #增加一行source /etc/profile



4.3-3 创建6个节点文件

cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done


4.3-4 开启群集功能

#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1                                    #87行,注释掉bind项,默认监听所有网卡
protected-mode no                                #111行,关闭保护模式
port 6001                                        #138行,修改redis监听端口
daemonize yes                                    #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid        #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"    #354行,指定日志文件
dir ./                                            #504行,指定持久化文件所在目录
appendonly yes                                    #1379行,开启AOF
cluster-enabled yes                                #1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf                #1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000                        #1590行,取消注释群集超时时间设置

替换6002-6006文件快捷方法.

先将6001的redis.conf文件,替换到6002-6006里
for i in {1..6}
do
\cp -f redis.conf /usr/local/redis/redis-cluster/redis600$i
done然后到各个配置文件里使用sed替换,如此类推sed -n '/6001/p' redis.conf
sed -n 's/6001/6002/p' redis.conf
sed -i 's/6001/6002/p' redis.conf
sed -n '/6002/p' redis.confsed -n 's/6001/6003/p' redis.conf
sed -i 's/6001/6003/p' redis.conf
sed -n '/6003/p' redis.confsed -n 's/6001/6004/p' redis.conf
sed -i 's/6001/6004/p' redis.conf
sed -n '/6004/p' redis.confsed -n 's/6001/6005/p' redis.conf
sed -i 's/6001/6005/p' redis.conf
sed -n '/6005/p' redis.confsed -n 's/6001/6006/p' redis.conf
sed -i 's/6001/6006/p' redis.conf
sed -n '/6006/p' redis.conf
#启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conffor i in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$i
./redis-server redis.conf
doneps -ef | grep redis

4.3-5 启动集群

redis-cli --cluster create 192.168.154.10:6001 192.168.154.10:6002 192.168.154.10:6003 192.168.154.10:6004 192.168.154.10:6005 192.168.154.10:6006 --cluster-replicas 1六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。


4.3-6 测试集群

redis-cli -h 192.168.154.10 -p 6001 -c   #加-c参数,节点之间就可以互相跳转

127.0.0.1:6001> cluster slots    #查看节点的哈希槽编号范围


对应的slave节点也有这条数据,但是别的节点没有

4.4 Cluster 集群增加节点动态扩容

已有集群为6个节点192.168.154.10:6001 - 192.168.154.10:6006,3组主从节点。现要增加第4组主从节点192.168.154.10:6007,192.168.154.10:6008

4.4-1 创建一个新的主节点和一个从节点

192.168.154.10:6007为主节点将192.168.154.10:6008创建为192.168.154.10:6007的从节点

cd ..
cp -a redis6001 redis6007
cp -a redis6001 redis6008
cd redis6007/
rm -rf appendonlydir/ nodes-6001.conf
sed -i 's/6001/6007/' redis.conf
sed -n '/6007/p' redis.conf
cd ..
cd redis6008
rm -rf appendonlydir/ nodes-6001.conf 
sed -i 's/6001/6008/' redis.conf
sed -n '/6008/p' redis.conf

cd ..
cd redis6007
./redis-server redis.conf 
cd ..
cd redis6008
./redis-server redis.conf 
ps aux | grep redis

命令里需要指定一个已有节点以便于获取集群信息,本例是指定的192.168.154.10:6001

redis-cli -h 192.168.154.10 -p 6001 --cluster add-node 192.168.154.10:6007 192.168.154.10:6001redis-cli -h 192.168.154.10 -p 6001 --cluster add-node 192.168.154.10:6008 192.168.154.10:6001


redis-cli -h 192.168.154.10 -p 6001 
CLUSTER nodes  #查看node ID


4.4-2 将192.168.154.10:6008创建为192.168.154.10:6007的从节点,命令里需要指定一个已有节点以便于获取集群信息和主节点的node ID

redis-cli -h 192.168.154.10 -p 6008
192.168.154.10:6008> cluster replicate 082f30cde9799c551492390880b9c949e095a161
OK


4.4-3 新加入的主节点是没有槽数的,只有初始化集群的时候,才会根据主的数据分配好,如新增的主节点,需要手动分配

redis-cli -h 192.168.154.10 -p 6007 --cluster reshard 192.168.154.10:6001

redis-cli -h 192.168.154.10 -p 6001
192.168.154.10:6001> CLUSTER nodes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/41207.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于ORACLE单例数据库中的logfile的切换、删除以及添加

一、有关logfile的状态解释 UNUSED: 尚未记录change的空白group(一般会出现在loggroup刚刚被添加,或者刚刚使用了reset logs打开数据库,或者使用clear logfile后) CURRENT: 当前正在被LGWR使用的gro…

深入理解【 String类】

目录 1、String类的重要性 2、常用方法 2、1 字符串构造 2、2 String对象的比较 2、3 字符串查找 2、4字符转换 数值和字符串转换: 大小写转化: 字符串转数组: 格式转化: 2、5 字符串替换 2、6字符串拆分 2、7 字符串…

Mysql中间件和高可用

文章目录 一、MySQL中间件代理服务器MycatMycat应用场景Mycat部署 实现读写分离 二、MySQL高可用高可用解决方案MHA高可用实现MHA 一、MySQL中间件代理服务器 数据库主要分为两大类:关系型数据库与 NoSQL 数据库(非关系型数据库)。 数据库主…

ATFX汇市:美国大非农数据来袭,美指与欧元或迎剧烈波动

ATFX汇市:今日20:30,美国劳工部将公布6月非农就业报告,其中新增非农就业人口数据最受关注,前值为27.2万人,预期值19万人,预期降幅高达8.2万人。如果公布值确实如预期一般,美联储降息预期将增强&…

以太网协议介绍——UDP

注:需要先了解一些以太网的背景知识,方便更好理解UDP协议、 以太网基础知识一 以太网基础知识二 UDP协议 UDP即用户数据报协议,是一种面向无连接的传输层协议,属于 TCP/IP 协议簇的一种。UDP具有消耗资源少、通信效率高等优点&a…

跟着峰哥学java 微信小程序 第二天 封装ES7 + 后端工作

1.前端 1.1使用promise封装 使用promise封装以至于在图片路径 统一路径中修改 //封装统一请求域名 const baseUrl "http://localhost:8080"; //封装后需导出 export const getBaseUrl()>{return baseUrl; } 导入外来资源 初始化数据 设置数据 将处理后的数据…

力扣热100 滑动窗口

这里写目录标题 3. 无重复字符的最长子串438. 找到字符串中所有字母异位词 3. 无重复字符的最长子串 左右指针left和right里面的字符串一直是没有重复的 class Solution:def lengthOfLongestSubstring(self, s: str) -> int:# 左右指针leftright0ans0#初始化结果tablecolle…

AIGI赋能未来:人工智能如何重塑电子电路学习体验

文章目录 一、掌握基础知识与技能1. 扎实理论基础2. 熟练使用工具 二、融合AI技术提升学习效率1. 利用AI辅助学习平台2. 应用AI工具进行电路设计与仿真 三、探索创新应用方向1. 关注AI与电子电路的交叉领域2. 参与开源项目和竞赛 四、培养跨学科思维1. 加强数学与计算机科学知识…

解决使用PPIO欧派云服务器时无法使用sftp的问题

首先在对外TCP端口中选择22端口: 在连接-端口映射中可以看到: 使用ssh连接云服务器,更新包列表并安装OpenSSH服务器: apt-get update apt-get install-y openssh-server 创建 SSH 运行目录: mkdir /var/run/sshd 设…

Linux: 命令行参数和环境变量究竟是什么?

Linux: 命令行参数和环境变量究竟是什么? 一、命令行参数1.1 main函数参数意义1.2 命令行参数概念1.3 命令行参数实例 二、环境变量2.1 环境变量概念2.2 环境变量:PATH2.2.1 如何查看PATH中的内容2.2.2 如何让自己的可执行文件不带路径运行 2.3 环境变量…

Android车载开发中调试app与bat结合的丝滑小妙招

项目场景: 做Android车载的小伙伴调试app的时候常年就是手动adb命令三连,例如我常用的adb推送apk的命令 adb root adb remount adb push D:\workspace_atc\XSP3-10A\AutoSystemUIPlugin\app\release\CarSystemUI.apk /system/priv-app/CarSystemUI …

kylin arm xcb版本异常问题解决

源码编译qt 未生成xcb库,查看源码xcb readme.txt 提示 版本要求 下载 [ANNOUNCE] libxcb 1.14 [ANNOUNCE] xcb-proto 1.14 解压源码编译, 先编译xcb-proto sudo ./configure --prefix/usr/local/xcb-proto make make install 在编译xcb export PKG_CONFIG_PATH…

并发编程(多线程)带来了哪些问题?

前面我们了解到多线程技术有很多好处,比如说多线程可以充分利用多核 CPU 的计算能力,那多线程难道就没有一点缺点吗? 有。 多线程很难掌握,稍不注意,就容易使程序崩溃。我们以在路上开车为例: 在一个单向行驶的道路上,每辆汽车都遵守交通规则,这时候整体通行是正常的…

C++基石:掌握高效编程的艺术

C 关于命名空间:namespace 上述文档详细介绍了C标准库(Standard C Library)的一些关键约定,这些约定不仅帮助开发者理解如何正确使用库中的功能,也明确了实现者在设计库时的灵活性和限制。下面是对文档中提到的几个要点…

部署LVS+keepalived做网站的高可用,高负载。

LVSkeepalived keepalived背景 针对LVS的辅助工具,主要提供故障切换与健康检查。 工作场景:作为调度器的双机热备,以及节点服务器的健康检查以及故障切换(删除条目)。 借鉴了VRRP协议来实现高可用。 keepalived部署…

后端学习(一)

添加数据库包: 数据库连接时 发生错误: 解决方式: SqlConnection conn new SqlConnection("serverlocalhost;databaseMyBBSDb;uidsa;pwd123456;Encryptfalse;") ;conn.Open();SqlCommand cmd new SqlCommand("SELECT * FROM…

WAIC上官宣!大模型语料提取工具MinerU正式发布,开源免费“敲”好用

7月4日,2024 WAIC科学前沿全体会议在上海世博中心红厅隆重举行。上海人工智能实验室与商汤科技联合香港中文大学和复旦大学正式发布新一代大语言模型书⽣浦语2.5(InternLM2.5),同时全链条工具体系迎来重磅升级,对于大模…

Android 四大组件

1. Activity 应用程序中,一个Activity通常是一个单独的屏幕,它上面可以显示一些控件,也可以监听并对用户的事件做出响应。 Activity之间通过Intent进行通信,在Intent 的描述结构中,有两个最重要的部分:动…

Java跳出循环的四种方式

1、continue,break,return continue:跳出当前层循环的当前语句,执行当前层循环的下一条语句。   continue标签 break:跳出当前层循环。 break标签:多层循环时,跳到具体某层循环。 return:结束所有循环…

基于python 的动态虚拟主机

将自己电脑上的Python脚本文件上传到虚拟机/var/www/cgi-bin/目录下 [rootlocalhost conf.d]# cd /var/www/cgi-bin/ [rootlocalhost cgi-bin]# rz -E rz waiting to receive.编辑vhost.conf配置文件 [rootlocalhost conf.d]# vim vhost.conf<virtualhost 192.168.209.140…