day02-统计数据

numpy统计学

1.求平均值[数组名.mean()/np.mean(数组名)]

m1 = np.arange(20).reshape((4,5))m1.mean()
#9.5

若想要求某一维的平均值,设置axis参数,多维数组元素指定:

在这里插入图片描述

  • axis = 0,将从上往下计算。
  • axis = 1,将从左往右计算
  • 无axis参数,默认将所有元素相加除以个数。
m1 = np.arange(20).reshape((4,5))m1.mean(axis = 0)  #得到每列的平均值的一维数组
#array([7.5,8.5,9.5,10.5,11.5])m1.mean(axis = 1)  #得到每行的平均值的一维数组
#array([ 2.,  7., 12., 17.])

2.中位数[np.median(数组名)]

又称中位数、中值

是按顺序排列后的一组数组中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值

  • 平均数:是一个‘虚拟’的数,是通过计算得到的它不是数据中的原始数据。.

  • 中位数:是一个不完全"虚拟"的数。

  • 平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”

  • 中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的"中等水平"

ar1 = np.array([1,3,5,6,8])
np.median(ar1)out: 5.0ar1 = np.array([1,3,5,6,8,9])
np.median(ar1)out: 5.5

3.求标准差[np.std(数组名)]

在概率统计中最常使用作为统计分布程度上的测量,是反映一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标

  • 标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。

简单来说,标准差是一组数据平均值分散程度的一种度量。

  • 一个较大的标准差,代表大部分数值和其平均值之间差异较大;
  • 一个较小的标准差,代表这些数值较接近平均值。`
a = np.array([95,85,75,65,55,45])
b = np.array([73,72,71,69,68,67])np.std(a)
np.std(b)#17.07825127659933
#2.160246899469287

标准差的计算公式:

import math
# 按步骤计算下标准差
(a - np.mean(a))**2)
math.sqrt(np.sum(((a - np.mean(a))**2)/a.size))

标准差应用于投资上,可作为量度回报稳定性的指标。

标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。

相反,标准差数值越小,代表回报较为稳定,风险亦较小。

4.方差[数组名.var()]

衡量随机变量或一组数据时离散程度的度量

a = np.array([95,85,75,65,55,45])
b = np.array([73,72,71,69,68,67])
print('A组的方差为:',a.var())
print('B组的方差为:',b.var())
A组的方差为: 291.6666666666667
B组的方差为: 4.666666666666667

5.求最大值[数组名.max()/np.max(数组名)]

m1 = np.array([[ 0  1  2  3  4][ 5  6  7  8  9][10 11 12 13 14][15 16 17 18 19]]
)m1.max()
np.max(m1)m1.max(axis=1)
np.max(m1,axis=1)#axis=0,从上往下查找: [15 16 17 18 19]
#axis=1,从左往右查找 [ 4  9 14 19]

6.求最小值[数组名.min()/np.min(数组名)]

m1.min()
print('axis=0,从上往下查找:',m1.min(axis=0))
print('axis=1,从左往右查找',m1.min(axis=1))
0
axis=0,从上往下查找: [0 1 2 3 4]
axis=1,从左往右查找 [ 0  5 10 15]

7.求和[数组名.sum()/np.sum(数组名)]

print(m1)
print(np.sum(m1))
print('axis=0,从上往下查找:',np.sum(m1,axis=0))
print('axis=1,从左往右查找',np.sum(m1,axis=1))
190
axis=0,从上往下查找: [30 34 38 42 46]
axis=1,从左往右查找 [10 35 60 85]

8.加权平均值[np.average(数组名)]

即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数

格式:

numpy.average(a, axis=None, weights=None, returned=False)

weights: 数组,可选

与 a 中的值关联的权重数组。 a 中的每个值都根据其关联的权重对平均值做出贡献。权重数组可以是一维的(在这种情况下,它的长度必须是沿给定轴的 a 的大小)或与 a 具有相同的形状。如果 weights=None,则假定 a 中的所有数据的权重等于 1。一维计算是:

avg = sum(a * weights) / sum(weights)

对权重的唯一限制是 sum(weights) 不能为 0. `

average_a1 = [20,30,50]print(np.average(average_a1))
print(np.mean(average_a1))

实列:计算学科综合成绩

使用“示例—权重已知”中的数据,我们对比两位学生的考试成绩

姓名平时测验期中考试期末考试
小明809095
小刚959080

学校规定的学科综合成绩的计算方式是:

平时测验占比期中考试占比期末考试占比
20%30%50%

要求 :比较谁的综合成绩更好

xiaoming = np.array([80,90,95])
xiaogang = np.array([95,90,80])
# 权重:weights = np.array([0.2,0.3,0.5])
# 分别计算小明和小刚的平均值
print(np.mean(xiaoming))
print(np.mean(xiaogang))# 分别计算小明和小刚的加权平均值
print(np.average(xiaoming,weights=weights))
print(np.average(xiaogang,weights=weights))
# 对比得到结果
88.33333333333333
88.33333333333333
90.5
86.0

变异系数:原始数据标准差与原始数据平均数的比

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/40658.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

44 mysql batch insert 的实现

前言 我们这里 来探讨一下 insert into $fields values ($values1), ($values2), ($values3); 的相关实现, 然后 大致来看一下 为什么 他能这么快 按照 我的思考, 应该里里面有 批量插入才对, 但是 调试结果 发现令我有一些意外 呵呵 果然 只有调试才是唯一的真理 相比于 …

Linux的Socket开发概述

套接字(socket)是 Linux 下的一种进程间通信机制(socket IPC),在前面的内容中已经给大家提到过,使用 socket IPC 可以使得在不同主机上的应用程序之间进行通信(网络通信)&#xff0c…

MATLAB和Python发那科ABB库卡史陶比尔工业机器人模拟示教框架

🎯要点 🎯模拟工业机器人 | 🎯可视化机器人DH 参数,机器人三维视图 | 🎯绘制观察运动时关节坐标位置、速度和加速度 | 🎯绘制每个关节处的扭矩和力 | 🎯图形界面示教机器人 | 🎯工业…

Qt入门小项目 | WPS tab页面(无边框窗口综合应用)

文章目录 一、手写代码实现WPS tab页面 一、手写代码实现WPS tab页面 实现类似WPS tab效果,具体包含: 自定义标题栏:最大、最小、关闭在QTabWidget的tab上增加控件在QTabWidget的tab上右键菜单可拖拽移动可拉伸窗口双击标题栏在最大与正常间…

Objection 对命令的批量操作

假定现在需要对好多不同的类进行批量hook,逐个hook非常繁琐,那么可以要将这些hook的类放到一个文件里,并且在这些类的前面加上hook命令,内容如下 使用如下命令执行该文件中的命令 objection -g 测试 explore -c d:/hookData/toHoo…

昇思25天学习打卡营第13天|ResNet50图像分类

1. 学习内容复盘 图像分类是最基础的计算机视觉应用,属于有监督学习类别,如给定一张图像(猫、狗、飞机、汽车等等),判断图像所属的类别。本章将介绍使用ResNet50网络对CIFAR-10数据集进行分类。 ResNet网络介绍 ResNet50网络是2015年由微软…

传承与创新,想让认字更简单?就来看《米小圈动画汉字》吧!

汉字,作为中华文化的精髓和根基,自古以来便承载着中华民族的思想与记忆。在现代社会,随着文化多样性的崛起和科技进步的推动,汉字的教育也更加的多元化,《米小圈动画汉字》作为一项全新的教育资源,不仅致力…

【python基础】—calendar模块

文章目录 前言一、calendar模块方法1.firstweekday()2.setfirstweekday(firstweekday)3.isleap(year)4.leapdays(y1, y2)5.weekday(year, month, day)6.monthrange(year, month)7.weekheader(n)8.monthcalendar(year, month)9.prmonth(theyear, themonth, w0, l0)10.prcal(year…

【硬核科普】存算一体化系统(Processing-in-Memory, PIM)深入解析

文章目录 0. 前言1. 提出背景1.1 存储墙1.2 功耗墙 2. 架构方案2.1 核心特征2.2 技术实现2.2.1 电流模式2.2.2 电压模式2.2.3 模式选择 2.3 PIM方案优势 3. 应用场景4. 典型产品4.1 鸿图H304.2 三星HBM-PIM 5. 存算一体化缺点6. 总结 0. 前言 按照国际惯例,首先声明…

c++类模板及应用

文章目录 为什么要有函数模板一般实现举例类模板举例 继承中类模板的使用特殊情况 友元函数模板类和静态成员类模板实践 为什么要有函数模板 项目需求: 实现多个函数用来返回两个数的最大值,要求能支持char类型、int类型、double 一般实现举例 类模板举例 继承中类…

如视“VR+AI”实力闪耀2024世界人工智能大会

7月4日,2024世界人工智能大会暨人工智能全球治理高级别会议(以下简称为“WAIC 2024”)在上海盛大开幕,本届大会由外交部、国家发展和改革委员会、教育部等部门共同主办,围绕“以共商促共享 以善治促善智”主题&#xf…

【SSL 1823】消灭怪物(非传统BFS)

题目大意 小b现在玩一个极其无聊的游戏,它控制角色从基地出发,一路狂奔夺走了对方的水晶,可是正准备回城时,发现地图上已经生成了 n n n 个怪。 现在假设地图是二维平面,所有的怪和角色都认为是在这个二维平面的点上…

【算法训练记录——Day41】

Day41——动态规划Ⅲ 1.理论基础——代码随想录2.纯01背包_[kamacoder46](https://kamacoder.com/problempage.php?pid1046)3.leetcode_416分割等和子集 背包!! 1.理论基础——代码随想录 主要掌握01背包和完全背包 物品数量: 只有一个 ——…

农作物生长环境的远程监控与智能调控

农作物生长环境的远程监控与智能调控 农作物生长环境的远程监控与智能调控技术,作为现代农业科技的核心组成部分,正逐步革新传统农业的生产模式,推动农业向精准化、智能化转型。这一技术体系综合应用了物联网、大数据、云计算以及人工智能等…

chrome 谷歌浏览器插件打包

1、找到id对应的字符串去搜索 C:\Users\<你的用户名>\AppData\Local\Google\Chrome\User Data\Default\Extensions2、选择根目录 直接加载下面的路径扩展可用&#xff1a;

Python酷库之旅-第三方库Pandas(001)

目录 一、Pandas库的由来 1、背景与起源 1-1、开发背景 1-2、起源时间 2、名称由来 3、发展历程 4、功能与特点 4-1、数据结构 4-2、数据处理能力 5、影响与地位 5-1、数据分析“三剑客”之一 5-2、社区支持 二、Pandas库的应用场景 1、数据分析 2、数据清洗 3…

7月2日PythonDay1

阶段一阶段导学 测试人员为什么要学习编程&#xff1f; Python是一门快速增长的计算机编程语言 白盒测试、自动化测试、测试开发 为什么学习Python&#xff1f; 相对于其他编程语言更简单 语言开源并且免费 使用人群广泛 应用领域广泛 学习目标 掌握python基础语法&…

python库(2):Passlib库

1 Passlib简介 Passlib库就是一个强大的工具&#xff0c;专门用于密码的安全存储和验证。本文将介绍Passlib库的基本概念、功能和使用方法&#xff0c;帮助更好地理解和应用密码安全技术。 Passlib是一个用于密码加密、哈希和验证的Python库&#xff0c;它提供了多种密码哈希…

云桌面运维工程师

一 深信服驻场工程师 1 深信服AC、AF、AD、NGAF、WOC Atrust、WAF项目实施经验者优先考虑。 负责云桌面POC测试 部署和配置&#xff1a;设置云桌面基础设施&#xff0c;包括虚拟化平台、云桌面管理软件和相关组件。确保正确配置网络、存储和安全设置。 用户体验&#xff1…

论文解读——掌纹生成网络 RPG-Palm

论文&#xff1a;RPG-Palm: Realistic Pseudo-data Generation for Palmprint Recognition&#xff08;2023.7&#xff09; 作者&#xff1a;Lei Shen, Jianlong Jin, Ruixin Zhang, Huaen Li, Kai Zhao, Yingyi Zhang, Jingyun Zhang, Shouhong Ding, Yang Zhao, Wei Jia 链接…